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Abstract

This paper is concerned with accurate and efficient fingerprint matching. We have two main contributions:

(1) define a novel feature vector for each fingerprint minutia based on the global orientation field. These features are used
to identify corresponding minutiae between two fingerprint impressions by computing the Euclidean distance between
vectors.

(2) novel distortion-tolerant matching algorithm based on the closest triangle is developed. Furthermore, fingerprint directional
field is also used to compute the final matching score combining with minutiae elaborately.

A series of experiments conducted on the public data collection, DB3, FVC2002, demonstrates the effectiveness of our method.
� 2005 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

In minutia-based fingerprint matching, two stages can
be distinguished. First, registration aligns both fingerprints
as well as possible. Most algorithms use a combination of
translation, rotation and scaling for this task. After registra-
tion, the matching score is determined by counting the cor-
responding minutiae pairs between both fingerprints. Two
minutiae correspond if a minutia from the test set is located
within a bounding box or tolerant zone around a minutia
from the template set. The matching score, which is a num-
ber in the range from 0 to 1, is calculated as the ratio of the
number of matchedminutiae to the total number of minutiae.
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Registration stage is to recover the pose transformation
between two fingerprints from the same finger. To estimate
the transformation in minutia-based matching procedure,
minutia correspondences must be obtained accurately. But
the task is difficult to complete due to several complicating
factors such as the rotation, translation and deformation of
the fingerprints, the location and direction errors of detected
minutiae from fingerprints as well as the presence of spuri-
ous minutiae and the absence of genuine minutiae. Several
approaches to solve the problem have been proposed in the
literature. These include methods based on structure match-
ing [1–4], alignment matching[5–8], non-linear transforma-
tion [9,10]. The methods proposed in Refs.[5–8] make use
of ridges associated with each minutia to get the correspon-
dences. However, the ridge is less discriminatory feature be-
cause the ridges from different fingers or different positions
in the same fingerprint may be very similar. The local struc-
ture composed of several minutiae close to each other serves
to obtain the minutiae correspondences in Refs.[1–4,9,10].

http://www.elsevier.com/locate/patcog
mailto:jqi@nlpr.ia.ac.cn
mailto:jqi@mail.pattek.com.cn
mailto:wys@nlpr.ia.ac.cn


1666 J. Qi, Y. Wang / Pattern Recognition 38 (2005) 1665–1671

It is noted that the representation of local structure based
on a group of minutiae is not robust because it relies on
the interdependencies between minutia details, which can
be missed or erroneously detected by a minutia extraction
algorithm. In addition, determining the similarity of local
structures is difficult because the correspondences between
the elements in local structures cannot be known in advance.
The last stage, i.e. matching stage, is to establish the

number of corresponding minutia pairs to compute the final
matching score after registration. If two identical minutia
point patterns are exactly aligned with each other, each pair
of corresponding minutiae is completely coincident. In such
a case, the matching task can be easily completed by count-
ing the number of overlapping pairs. However, in practice,
such a situation is not encountered. On the one hand, the
location and direction errors introduced by the minutiae de-
tection algorithm hinder the alignment algorithm to recover
the relative pose transformation exactly, while on the other
hand, the non-linear deformation of fingerprints which is
an inherent property of fingerprint impressions can be ac-
cumulated to a large degree. With the existence of such a
non-linear deformation, it is impossible to exactly recover
the position of each input minutia with respect to its corre-
sponding minutia in the template. Therefore, the matching
algorithm needs to be elastic which means that it should be
capable of tolerating, to some extent, the deformations due
to the location and direction errors and non-linear defor-
mations. Many matching algorithms have deliberated this
non-linear deformation problem in order to improve their
matching performance[3,4,6,9–14]. In Refs.[6,11] a vari-
able matching boundary box is used. But the false matching
rate (FMR) may increase as the size of matching box be-
comes larger. In Refs.[3,4], the matching certainty level of
local minutiae structures is used to increase the reliability of
the matching. As mentioned before, the local structure fea-
ture composed of a group of minutiae is not reliable due to
depending on the interdependency of minutiae. A thin-plate
spline model is used to describe the non-linear distortion
between the two sets of possible pairs in Refs.[9,10]. The
method is more complex than the rigid matching algorithm
and has a heavy load of computation. In Refs.[12,13], a
method is proposed that the ridge distances are normalized
all over the image. Since it is not known in advance whether
captured fingerprints contain any distortion, true normaliza-
tion of the fingerprints is not possible.
With these in mind, we have two main contributions in

this paper:

(1) In registration stage, a new method of fingerprint align-
ment is developed incorporating the global orientation
field with minutiae properly. In contrast to the local
structural features employed by the matching algo-
rithms proposed in Refs.[1–4], the novel structure of
each minutia we construct in this paper is not sensitive
to noise because it only depends on the global finger
print orientation field which is relatively robust to noise.

Furthermore, our structure capturing the rich informa-
tion on fingerprint ridge-flow pattern is more discrimi-
native than the local minutia structure.We get the strik-
ing property that our structure can be represented as
a minutia feature vector. Hence, obtaining the correct
minutiae correspondences exactly becomes the compu-
tation of Euclidean distances between feature vectors.
The task is straightforward.

(2) In matching stage, a novel matching method based on
the closest triangles is proposed to compensate for the
inexact registration. Our triangular matching technique
is different from the approach in Ref.[14]. In Ref.
[14], if there exists one pair of false matched triangles,
the matching process cannot continue forward result-
ing in the false non-match case due to the strong in-
terdependency between the triangles. In our matching
method, the constructed triangles are independent from
each other. Even if there is one pair of false matched
triangles, our method can still work well due to the in-
dependency between triangles.

The rest of the paper is organized as follows. A detailed
definition of our novel minutiae feature vector is presented
in the following section. The triangular matching scheme
based on the proposed minutia structure is developed in
Section 3. This is followed by validation experiments con-
ducted on the public domain collection of fingerprint images,
DB3, FVC2002. Finally, concluding remarks are presented
in Section 5.

2. Definition of the novel structure

In general, a minutia pointMk detected from a fingerprint
can be described by a feature vector given by

Fk = (xk yk �k), (1)

where(xk, yk) is its coordinate,�k is the local ridge direc-
tion. Note that in a fingerprint image, there is no difference
between a local ridge orientation of 90◦ and 270◦, since
the ridges oriented at 90◦ and the ridges oriented at 270◦
in a local neighborhood cannot be differentiated from each
other. Hence, the value of�k is commonly set in the range
from −�/2 to �/2 according to the following formula:

�k =
{�k if − �/2<�k < �/2,

� − �k if �/2<�k < �,
�k + � if − �<�k < − �/2.

(2)

We define a function d�(t1, t2) for the difference between
two directions or angles,t1 and t2, −�/2< t1, t2< �/2,
keeping into account the effect of rotation of fingerprint im-
age on the directions, as follows:

d�(t1, t2) =
{

t1 − t2 if − �/2<(t1 − t2)< �/2,
t1 − t2 + � if − �<(t1 − t2)< − �/2,
t1 − t2 − � if �/2<(t1 − t2)< �.

(3)



J. Qi, Y. Wang / Pattern Recognition 38 (2005) 1665–1671 1667

Fig. 1. Sampling points organized on three lines around a minutia
detail.

Given a minutia pointMk with orientation�k , we define
our minutia structure as following procedures:
Let �1 = �k, �2 = �k + 2�/3 and�3 = �2 + 2�/3. We

plot three linesl1, l2, and l3 along the angles�1, �2 and
�3 with respect toX axis through the minutia pointMk .
A sampling step is done starting with the minutia point
Mk along each line with sampling interval�. The sampling
action along each line stops till the latest sampling point falls
in fingerprint background region, as illustrated inFig. 1.
The sampling pattern consists of three lineslm,

(1�m�3), with three positive directions�m, (1�m�3),
each one of them comprisingNk

lm
sampling pointsPk

i,lm
,

(1� i�Nk
lm

,1�m�3), equally distributed along the line

lm. Denoting by�k
i,lm

the local ridge orientation estimated

in Pk
i,lm

, the relative direction�k
i,lm

between minutiaMk

and the sampling pointPk
i,lm

calculated by

�k
i,lm

= d�(�k,�
k
i,lm

) (4)

is independent from the rotation and translation of the finger-
print. The feature vectorFk of a minutiaMk that describes
its structure characteristic with global fingerprint orientation
field is given by

Fk =
{{

�k
i,lm

}Nk
lm

i=1

}3

m=1

. (5)

The structure feature vectorFk is invariant to rotation and
translation of the fingerprint.
SupposeFi andFj are the structure feature vectors of

minutia i from input fingerprint and minutiaj from template

fingerprint, respectively. A similarity level is defined as

S(i, j) =
{ T − |Fi − Fj |

T
if |Fi − Fj |<T,

0 otherwise,
(6)

whereT is the predefined threshold and|Fi − Fj | is the
Euclidean distance between feature vectorsFi andFj . Note
that the dimensions of them may be different from each
other, and the Euclidean distance can be computed according
to the minimum of their dimensions. The similarity level
S(i, j),0�S(i, j)�1, describes a matching certainty level
of a structure pair instead of simply matched or not matched.
S(i, j)=1 implies a perfect match, whileS(i, j)=0 implies
a total mismatch.

3. Fingerprint matching

Using the proposed minutia feature vectors, we develop
a new triangular fingerprint matching algorithm making use
of both fingerprint minutiae and orientation fields. Different
from other minutia-based approaches our algorithm receives
at the input two minutia lists and two orientation fields cap-
tured from two fingerprint impressions and delivers a match-
ing score that expresses the degree of similarity between the
two fingerprints. In order to align two point sets and two
orientation fields before calculating the matching score, we
need to identify a set of corresponding minutia pairs.

3.1. Corresponding minutia identification

The value of the similarity level between minutiae serves
to identify corresponding pairs. The best-matched structure
pair can be used as a corresponding point pair. Although
not all well-matched structures are reliable, our experiments
show that the best-matched structure pair of all minutia
structures of template and input fingerprints is very reliable.
The best-matched minutia structure pair(b1, b2) is obtained
by maximizing the similarity level as

S(b1, b2) =max
i,j

(S(i, j)). (7)

3.2. Registration

The registration stage is meant to recover the geometric
transformation between the two fingerprint impressions.
In our work, the rigid transformation, i.e., translation vec-

tor (t =[tx , ty ]T) and rotation angle(�), is recovered by the
best-matched structure pair that exhibits the largest similar-
ity value in Eq. (7). Let the best-matched minutia structure
pair is denoted by(b1, b2), minutia b1 from the input fin-
gerprint and anotherb2 from the template fingerprint. Hence
we have

� = D(b2) − D(b1) and t = P(b2) − R�(b1), (8)
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whereR� denotes the 2× 2 operator of counterclockwise
rotation with� and the position and direction of a minutiab
are denoted byP(b)=[x(b), y(b)]T andD(b), respectively.
Applying the estimated geometric transformation onto the
minutiae from the test fingerprint we obtain the list com-
prising the registered minutiae. Also, The orientation field
from the test fingerprint will be aligned using the estimated
transformation simultaneously.

3.3. Triangular pairing

Because of various factors that include the presence of
local non-linear deformations and the errors induced by the
minutia extraction algorithm, the corresponding minutiae
cannot overlap exactly. Consequently, one must allow a
certain tolerance between the positions and directions of
corresponding minutiae by employing an elastic match-
ing algorithm as proposed in Refs.[3,6,7]. Therefore, the
matching should be elastic by using a 3-D bounding box
Bg in the feature space instead of an exact matching. But
the size of bounding box is tradeoff between the FMR and
the false non-match rate (FNMR). It is so difficult to choose
the desired and suitable box. In our method, two stages can
be used to complete the minutiae pairing. First, a stricter
box is chosen to get the initial corresponding minutiae
pairs. Next, triangular match is available to attain the true
corresponding minutiae pairs which are not found in the
first stage.

3.3.1. Initial minutiae pairing
A small size bounding boxBg is chosen to get two cor-

responding minutiae listsL1 andL2 which are from the
template fingerprint and the test fingerprint, respectively.
Minutiae pairs are collected among the pairs with the largest
similarity level values in Eq. (6), which, also fall in the
bounding boxBg .

3.3.2. Triangular matching
In the initial minutiae pairing stage, some true corre-

sponding minutiae may be not found due to the stricter box
chosen. Now we must perform the triangular matching al-
gorithm to deal with the situation. Before introducing the
triangular match approach, we first see how to determine
whether two triangles are similar.
Suppose there exist two triangles
ABC and
A′B ′C′

whose vertices are from the minutiae inL1 andL2, respec-
tively. In convenience, We denote the direction of the ridge
associated with the minutiae point A byO(A) and the length
of the line segmentAB by |AB|. Let

D�l (
ABC,
A′B ′C′) = ||AB| − |A′B ′||
+ ||BC| − |B ′C′||
+ ||CA| − |C′A′|| (9)

and

D�o(
ABC,
A′B ′C′)
= |O(A) − O(A

′
)| + |O(B) − O(B ′)|

+ |(O(C) − O(C′)|. (10)

Two similarity levels Sl(
ABC,
A′B ′C′) and
So(
ABC,
A′B ′C′) of 
ABC and 
A′B ′C′ can be
defined as follows:

Sl(
ABC,
A′B ′C′)

=



Tl−D�l (
ABC,
A′B ′C′)/3
Tl

if D�l (
ABC,
A′B ′C′)
3 ,

< Tl,

0 otherwise,
(11)

So(
ABC,
A′B ′C′)

=



To−D�o(
ABC,
A′B ′C′)/3
To

if D�o(
ABC,
A′B ′C′)
3 ,

< To,

0 otherwise.
(12)

It is well known that the two similarity levels capture the
information invariant to the rigid transformation and the
relatively small non-linear deformation. It is time for us to
detail our triangular matching method now. The main steps
are as follows:

(1) Choose one minutiaA1, not inL1 and not considered,
from the template fingerprint.

(2) Choose one minutiaB1, not in listL2 and not consid-
ered, from the relatively larger neighborhoodNA1 of
minutiaA1 in registered test fingerprint.

(3) Get two minutiaeA2 andA3, closest to minutiaA1,
from the matched minutiae listL1. Denote the corre-
sponding minutiae ofA2 andA3 asB2 andB3 from
the matched minutiae listL2, respectively.

(4) Compute the values ofSl(
A1A2A3,
B1B2B3)

andSo(
A1A2A3,
B1B2B3) according to Eqs. (11)
and (12).

(5) If there exist Sl(
A1A2A3,
B1B2B3)<Ts1 and
So(
A1A2A3,
B1B2B3)<Ts2, where Ts1 and Ts2
are threshold, we choose theB1, which minimizes
Sl(
A1A2A3,
B1B2B3) and So(
A1A2A3,
B1
B2B3), as the corresponding minutia of minutiaA1.

Repeat above steps until all minutiae from the template fin-
gerprint, not in the listL1, are considered. Now we have
completed the minutiae pairing task.

3.4. Orientation block pairing

As the orientation field estimation algorithm proposed
in Ref. [6], the fingerprint image should be divided into
a number of sub-blocks before computing the fingerprint
orientation. With the registered orientation field, the proce-
dure to identify the corresponding orientation block pairs is
straightforward. Let(B1, B2) denote the corresponding ori-
entation block pair, blockB1 from test fingerprint, blockB2
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from template fingerprint, respectively. The similarity degree
S(B1, B2) of the two blocksB1 and B2 is calculated as
follows:

D�(B1, B2) = |O(B1) + � − O(B2)|, (13)

S(B1, B2)

=
{ T1 − D�(B1, B2)

T1
if D�(B1, B2)<T1,

0 others,
(14)

where� is computed with Eq. (8),T1 is a threshold and the
direction of a blockB is denoted byO(B).

3.5. Matching score computation

With the introduction of our novel minutia structures and
registered fingerprint orientation fields the matching score
Ms can be determined by both minutia matching scoreMm

and orientation field matching scoreMo.
Let N1 andN2 denote the number of minutiae located

inside the intersection of the two fingerprint images for test
and template fingerprints, respectively. The minutia match-
ing scoreMm can be calculated according to the following
equation

Mm =
∑

i,j S(i, j)

max{N1, N2} , (15)

where (i, j) is the corresponding minutiae pair, one from
test fingerprint and another from template fingerprint, re-
spectively, andS(i, j) is computed according to Eq. (6).
The orientation field matching scoreMo is defined by

Mo =
∑

Bi,Bj
S(Bi, Bj )

N
, (16)

where(Bi, Bj ) is the corresponding orientation block pair,
one for test fingerprint and another for template fingerprint,
respectively,N is the number of overlapped blocks of both
fingerprints, andS(Bi, Bj ) is determined by Eq. (14).
The final matching scoreMs is computed as follows:

Ms = �mMm + �oMo, (17)

where(�m,�o) is a weight vector that specifies the weight
associated with the minutia matching scoreMm and the
orientation field matching scoreMo.

4. Experimental results

The experiments reported in this paper have been con-
ducted on the public domain collection of fingerprint im-
ages, DB3 in FVC2002. It comprises 800 fingerprint images
of size 300×300 pixels captured at a resolution of 500dpi,
from 100 fingers (eight impressions per finger).
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Fig. 2. The distribution curves of matching score on DB3 obtained
with the algorithm A (solid line) and the algorithm B (dotted line).

A set of experiments have been conducted in order to
show that both minutia information and orientation field in-
formation are complementary. First, denote our algorithm
using only minutia information by A, which means to cal-
culate matching score with Eq. (15); label our algorithm
making use of both the minutia and orientation field as B,
which computes the matching score according to Eq. (17).
Matching experiments have been performed on DB3 using
algorithms A and B. The distributions of false matching and
false non-matching scores are shown inFig. 2. The receiver
operating characteristic (ROC) curves obtained by the two
algorithms are illustrated inFig. 3. We note that algorithm B
outperforms the algorithm A. The only difference between
the two algorithms consists of the method used for match-
ing score computation. Consequently, these results reveal
that the minutia information and orientation field informa-
tion are complementary.
As mentioned above, we label our method as B. To show

the effectiveness of our triangular matching approach, a
comparative experiment has been conducted on DB3 with
algorithm B and algorithm C without the triangular match-
ing stage.Fig. 4 shows the matching performance in terms
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Fig. 3. ROC-curves on DB3 attained with the algorithmA (dash–dot
line) and the algorithm B (solid line).
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Fig. 4. ROC-curves on DB3 obtained with algorithm B (solid line)
and algorithm C (dash–dot line).

of ROC curves obtained with the two algorithms. The result
demonstrates that triangular matching method works better.
Next, we conducted a set of experiments on DB3 meant

to compare our algorithm with the approach proposed in
Ref. [3], which matches fingerprints based on both the local
and global structures of minutiae. For convenience we label
the method in Ref.[3] as D. The algorithm D uses the local
minutia structures for registration and computes matching
score based on the similarity level of corresponding local
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Fig. 5. ROC-curves on DB3 obtained with our matching method
(solid line) and the algorithm D (dash–dot line).
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Fig. 6. ROC-curves on DB3 attained with our matching method
(solid line) and the algorithm E (dash–dot line).

structures. We have performed the two algorithms on DB3
and obtained the results expressed in terms of ROC curves,
as shown inFig. 5. The results demonstrate that our method
is more effective than algorithm D.
Then, we compared the triangular matching method in

Ref. [14] with our method. For convenience, the match
scheme in Ref.[14] is denoted as E. The ROC curves is
exemplified inFig. 6. It is shown that our method does a
better matching job than algorithm E.
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Table 1
Comparison of our algorithm with algorithm PA26

Algorithm EER (%) Average enroll Average match
time (s) time (s)

Our algorithm 4.97 0.81 0.03
PA26 5.08 0.37 0.44

Finally, in Table 1we compare our result with that of
algorithm PA26 in DB3, which participated in the competi-
tion of FVC2002 and got the 12th place ranked by the equal
error rate (EER). According to the ranking rule in terms of
EER in FVC2002, our algorithm is in the first 12 places.

5. Conclusions

In this paper, we define novel minutia feature vectors that
allow integration of orientation field information with the
minutia details of fingerprints. The new feature vectors are
rotation and translation invariant and capture more global
information on fingerprint ridges and furrows pattern. Fur-
thermore, it reduces the interdependencies between minutia
details, which can be missed or erroneously detected by a
minutia extraction algorithm. A new triangle-based finger-
print matching algorithm that relies on the proposed minutia
vectors has been developed. The triangular match method
proposed in this paper is robust to the inexact registration
and non-linear deformation. In addition, the orientation field
and minutiae are combined to compute the matching score.
The experiments show that the two kinds of information
are complementary and the method for computing matching
score is effective.
The usefulness of our proposed approach is confirmed

in the experiments conducted, which show good perfor-
mance.
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