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Abstract

This paper proposes a method for calculating a nonnegative time–frequency distribution (TFD) whose concentration

is identical to that of Wigner–Ville distribution (WVD) when instantaneous frequencies (IFs) of the best-matched

elementary functions of the signal under analysis are pre-estimated. This method is based on a special class of

transformation group, referred to as semi-affine transformation (SAT) group. The essence of this method is to create a

joint distribution by translating the values of WVDs of Morlet wavelet to the positions around IFs of the best-matched

elementary functions. Theoretical predictions and numerical results indicate that the proposed strategy can result in the

most visually appealing TFDs for highly nonstationary signals.
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1. Introduction

Time–frequency representations (TFRs) or
time-scale representations (TSRs)1 was introduced
as a tool to characterize the time-varying spectral
d.

1For convenience, we will forgo the notional distinction

between TFR and TSR, treating them as the same. In often a

case, the specific name will be clear from context.

www.elsevier.com/locate/sigpro
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contents of nonstationary signals. Despite the
substantial achievements of the past 50 years,
one of the major issues in the field of TFR has
always been which distribution, if any, is the
absolute ‘‘best’’ in the sense of cross-term suppres-
sion and auto-term concentration. Traditionally,
the cross-terms have been mathematically awk-
ward to manipulate. This has made many of the
existing TFRs perform inadequately for real
applications.
The parametric2 TFRs seem to be a promising

remedy to solve the aforementioned problem. A
parametric TFR is the one which decomposes
signal over a family of well-localized elementary
functions (also known as time–frequency atoms,
or atoms for short) that are well adapted to the
signal’s local structures. The polynomial TFRs
[4–6], chirplet transform [7–11] and many of its
special cases [e.g., the transforms using Gabor
elementary functions [12,13], exponential chirplets
(hereafter referred to as e-chirplets)3 [14–18], and
Doppler chirplets (d-chirplets) [7,19–22], etc.] are
the representatives of the parametric TFRs.
Past theories of parametric TFRs have made great

inroads into the problem of cross-term suppression
and auto-term concentration mainly by: (1) concen-
trating on defining various overcomplete sets of
model-based elementary functions that exhibit a
wide range of time–frequency behaviors, (2) looking
for a positive (a misnomer, more strictly, nonnega-
2In this paper, we use ‘‘parametric’’ TFRs to distinguish

those derived from the decompositions using modeled elemen-

tary functions, where ‘‘modeled’’ means that the elementary

function is characterized by several parameters. It is worthwhile

noting, however, that the term ‘‘parametric’’ is generally

reserved for AR, MA, and ARMA models (see e.g., [1,2] for

details). The structured AR model used as a model-based

time–frequency distribution (TFD) can be found in [3].
3The ‘‘chirplet’’ is a noun of multitude. The commonly used

chirplets include [7]: w-chirplet (warbling chirplet), p-chirplet

(projective chirplet used in image processing), q-chirplet

(quadratic chirplet, i.e., quadratic phase), and d-chirplet

(Doppler chirplet). In [14–18], we refer to the dilated and

translated windowed exponential frequency-modulated elemen-

tary function as ‘‘FMmlet’’. In this paper, we prefer this

terminology to ‘‘exponential chirplet (e-chirplet)’’ since, in

principle, the FMmlet can be fitted in the framework of chirplet.

Likewise, the ‘‘Dopplerlet’’ in [19–22] can be referred to as ‘‘d-

chirplet’’.
tive)4 and cross-term free time–frequency distribu-
tion (TFD) by summing the weighted TFDs [in
Cohen’s class [26,27], usually the Wigner–Ville
distribution (WVD)] of the best-matched elementary
functions. But, these endeavors are a complete success
only for limited classes of elementary functions—to be
more specific, only for the frequency-invariant
Gaussian-enveloped elementary functions (e.g., Gabor
elementary functions [12,13]), or for the Gaussian-
enveloped elementary functions whose frequencies
vary linearly with time (e.g., four-parameter Gaussian
q-chirplets [10,11]). When the frequencies of the
elementary functions vary nonlinearly with time, i.e.,
the instantaneous frequencies (IFs) of the elementary
functions are nonlinear, much of cross-terms will
undesirably appear in the final distribution.
In an attempt to alleviate this drawback, we

proposed in [14] a ‘‘pseudo TFD’’, obtained by
summing the weighted IFs of the best matched
Gaussian e-chirplets. Since its marginal in time
gives no information of that in frequency and vice
versa, this type of representation is by no means a
signal’s energy distribution. In a parallel develop-
ment, polynomial TFRs [4–6] give a plausible and
interesting result. While meritorious for demon-
strating the time-frequency structures of the signal,
they are ad hoc, do not completely remove the
cross-terms for the most cases, and computing the
kernel coefficients is not a trivial task. Hence, more
effort needs to be directed in devising a general
and tractable formulation of cross-term free TFDs
with nonnegativity property. Notice that:
(1) The Gaussian q-chirplet is the only function

for which the WVD is nonnegative [28].
(2) Projection of the WVD of a Gaussian q-

chirplet onto time–frequency plane is an ellipse.
(3) Projection of the ridge of WVD of a

Gaussian q-chirplet onto time–frequency plane is
exactly the IF of the Gaussian q-chirplet per se.
(4) The Gaussian q-chirplet is a special case of

some other elementary functions, say, a Gaussian
e-chirplet. In other words, a Gaussian e-chirplet is
4There has been a great surge of activities in the past 20 years

or so on the distribution functions which are everywhere

nonnegative on the premise that such functions are more closely

parallel to their classical counterparts. The initial impetus came

from the original work by Cohen and Posch [23], and later work

by Loughlin et al. [24], Sang et al. [25], and others.
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a frequency-modulated version of a Gaussian q-
chirplet [17]. Moreover, a Morlet wavelet is also a
special case of Gaussian q-chirplet, therefore a
Gaussian e-chirplet is also a frequency-modulated
version of a Morlet wavelet [17].
(5) Frequency modulation sðtÞejfðtÞ of signal sðtÞ

in the time domain gives rise to a shearing or
warping in the time–frequency plane, but does not
alter the signal’s instantaneous power [because
jsðtÞejfðtÞj2 ¼ jsðtÞj2jejfðtÞj2 ¼ jsðtÞj2] and, accord-
ingly, does not affect the time marginal property
and the total energy.
Then, intuitively, if we can devise a surrogate

TFD by moving the values of WVDs of Morlet
wavelets to the positions of IFs of the best-
matched Gaussian e-chirplets, we can readily
obtain a nonnegative and cross-term free TFD
(NN-TFD). Fig. 1 is a somewhat typical illustra-
tion to this idea, showing how the WVD (con-
strained in a dashed parallelogram) of a Morlet
wavelet migrates parallel along the frequency axis
only. Geometrically, this migration, which we call
the semi-affine transformation (SAT) of time– -

frequency plane, adapts the new TFD (namely,
IF law of Morlet wavelet

WVD of Morlet wavelet

IF law of Gaussian e-chirplet

NN-WVD of Gaussian e-chirplet

Fig. 1. SAT of time–frequency plane. The ellipse (shape of

WVD of Morlet wavelet in time–frequency plane) adaptively

‘‘warps’’ in accordance with the difference of IF laws between a

Gaussian e-chirplet and a Morlet wavelet. In the usual context,

the abscissa and ordinate (not displayed) of this plot

correspond to time and frequency, respectively. We have

deliberately eliminated the coordinates, recognizing that, for

any operation in the time domain, there is an equivalent

operation in the frequency domain, or in the scale domain, or in

whatever other reasonable coordinate space in which one might

wish to work.
NN-WVD) in time–frequency plane in such a way
as to fit the IF of the best-matched e-chirplet. We
note that similar ideas of migration can also be
found in the reassignment method [29–31], which
improves the ‘‘readability’’ of a TFD by creating a
modified version of the TFD based on the trick of
movement of its values away from where they are
computed. Also note that for signals that are both
frequency and amplitude modulated, a class of
distributions which are explicit functionals of the
IF can be found in [32].
This paper is a sequel to [33] and presents novel

results on NN-WVD within the framework of
SAT. The remainder of this paper is organized as
follows. In Section 2 we introduce the SAT which
underlies our subject. As an illustration of how to
devise an NN-WVD for a specific parametric
TFR, a synopsis of the e-chirplet transform is
presented in Section 3 and the details for devising
the NN-WVD for the e-chirplet transform is
described in Section 4. Three examples for which
the NN-WVD is evidently appealing are given in
Section 5 and our conclusions are drawn in Section
6. Throughout the paper, we assume that any real-
valued signal under analysis can be converted to a
complex signal via the Hilbert transform or other
filtering techniques.
2. Semi-affine transformation of time–frequency

plane

In Section 4, we need to find an explicit
expression of NN-WVD. Toward this end, we
introduce a kind of transformation of time–-
frequency plane. Such a transformation (refer to
Fig. 1) can be rigorously defined as follows:

Definition 1. Let a 2 R, where R denotes the set of
real numbers. Let zðtÞ be a continuous function
over R. Define a semi-affine transformation (SAT)
Xa;z in the time–frequency plane ðt; f Þ 2 R2 such
that

Xa;zðt; f Þ ¼ ðt; f þ zðtÞ � aÞ; ðt; f Þ 2 R2 (1)

which portrays the action of Xa;z as a nonlinear
transformation mapping R2 into R2. As can be
seen from (1), under the SAT Xa;z, a given point
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ðt; f Þ on the time–frequency plane is migrated to a
new point ðt; f þ zðtÞ � aÞ. Note that this migration
is parallel to the frequency axis only, hence the
name semi-affine transformation because of its
departure from the stringent ‘‘parallelity’’ of two
lines in affine transformation.

Remarks. (1) If Xa;zðt1; f 1Þ ¼ Xa;zðt2; f 2Þ, then it
follows from (1) that t1 ¼ t2, f 1 þ zðt1Þ � a ¼

f 2 þ zðt2Þ � t2 ¼ f 2 þ zðt1Þ � a, and f 1 ¼ f 2. This
implies that Xa;z is injective, i.e., if ðt1; f 1Þaðt2; f 2Þ,
then, Xa;zðt1; f 1ÞaXa;zðt2; f 2Þ. For all ðt; f Þ 2 R2, it
is easily found that Xa;zðt; f � zðtÞ þ aÞ ¼ ðt; f Þ,
therefore, the SAT Xa;z given by Definition 1 is
surjective. Thus, Xa;z is a one-to-one transforma-
tion in the time–frequency plane.
(2) If xðtÞ ¼ zðtÞ þ b, one observes that

Xa;xðt; f Þ ¼ ðt; f þ xðtÞ � aÞ

¼ ðt; f þ zðtÞ � ða � bÞÞ ¼ Xa�b;zðt; f Þ.

This means that Xa;z is not uniquely determined by
zðtÞ. In general, Xa;z ¼ Xb;x, if and only if
zðtÞ � xðtÞ ¼ a � b, t 2 R.
(3) Geometrically, the SAT Xa;z is to topologi-

cally transform a 2-D phase plane Fðt; f Þ to
another phase plane F0ðt; f 0

Þ, where
f 0

¼ f þ zðtÞ � a. (Refer to Fig. 1.)

In order for one to understand the SAT Xa;z in a
meaningful sense, let us see a simple example.
Referring to Fig. 1, suppose that zðtÞ ¼ t2 þ 2t,
a ¼ 0, and an ellipse is given by

f

b1

� �2

þ
t

b2

� �2

¼ 1.

Under the SAT Xa;z, this ellipse is mapped to the
following new function

f þ ðt2 þ 2tÞ

b1

� �2
þ

t

b2

� �2

¼ 1,

which, as we can see, is not an ellipse any more.
The following are some superficial but funda-

mental properties5 of Xa;z.
5We will not discuss the plethora of algebraic properties nor

the fascinating topological properties of SAT and its corre-

sponding group, which—among other things—will be discussed

at length in our forthcoming paper.
Property 1.. If curve f ¼ zðtÞ intersects f ¼ xðtÞ,
then Xa;z ¼ Xb;x if and only if a ¼ b and zðtÞ ¼ xðtÞ,
t 2 R.

Property 2.. If a 2 R, b 2 R, zðtÞ and xðtÞ are
continuous functions over R; then, Xa;z 	 Xb;x ¼

Xaþb;zþx.

Proof of Property 2.

Xa;z 	 Xb;xðt; f Þ ¼ Xa;zðt; f þ xðtÞ � bÞ

¼ ðt; f þ zðtÞ þ xðtÞ � ða þ bÞÞ

¼ Xaþb;zþxðt; f Þ; ðt; f Þ 2 R2.

This completes the proof of Property 2. &

Property 3.. Xa;z 	 Xb;x ¼ Xb;x 	 Xa;z, i.e., the multi-
plication satisfies the commutative law.

Denote all the SATs Xa;z
� �

by G, that is,

G ¼ fXa;z j a 2 R; zðtÞ is continuous over Rg. (2)

Theorem 1. The set G forms a commutative group

with the multiplication of transformations.

Proof of Theorem 1. We need only prove the
existence of an identity element and an inverse
element. Since X0;0Xa;z ¼ Xa;z, G has identity
elements. Furthermore, X�1

a;z ¼ X�a;�z 2 G,
therefore every element of G has an inverse.
It follows from Property 3 and the associa-
tive law of multiplication that G forms a
commutative group with the multiplication of
transformations. &

The set G defined in (2) is now called SAT group.

Theorem 2. Let

H ¼ fXa;z j a 2 R; zðtÞ is differentiable over Rg.

Then, (a) H is a subset of G, and (b) H is an area-

preserved transformation group.

Proof of Theorem 2. It is easy to see that H is a
subgroup of G. To show (b), let Xa;z 2 H,
Xa;z : t 7!uðt; f Þ ¼ t, f 7!vðt; f Þ ¼ f þ zðtÞ � a. Since
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the transformation Jacobian

J ¼
qðu; vÞ
qðt; f Þ

¼

qu

qt

qu

qf

@v

@t

@v

@f

���������

���������
¼

1 0

z0ðtÞ 1

�����
����� � 1,

consequently, each transformation in subgroup H

preserves the area. &

Theorem 2 has a rather useful practical con-
sequence. From this theorem it follows that (1) the
time–frequency concentration is not affected under
the SAT (taking advantage of the fact that the
SAT is area preserving), (2) the energy conserva-
tion property is reserved under the SAT (taking
advantage of another fact that the SAT does not
alter the magnitude of the original time–frequency
plane).
3. Outline of e-chirplet transform

The e-chirplet [14] is defined by

qtc;f c;log s;r;m
ðtÞ

¼
1ffiffiffi
s

p g
t � tc

s

	 


� exp j2p 1þ r
t � tc

s

	 
h im

f c
t � tc

s

	 
 �
, ð3Þ

where j ¼
ffiffiffiffiffiffiffi
�1

p
, ðtc; f c; log s; r;mÞ represent the

parameters, s 2 Rþ, ðtc; f c; r;mÞ 2 R4; gðtÞ is the
window function (also known as ‘‘mother e-
chirplet’’), tc the time-center, f c the frequency-
center, log s the log-duration, r the chirprate, and
m the FM exponent. The IF of (3) is given by

IFqðtÞ ¼
1

2p

d½argfqtc;f c;logs;r;m
ðtÞg�

dt

¼
1

s
1þ ð1þ mÞr

t � tc

s

	 
h i
� 1þ r

t � tc

s

	 
h im�1

f c. ð4Þ

As remarked in [14], Eq. (3) is the prototype of the
elementary functions of many other transforms.
For example, the wavelet is a special case of an e-
chirplet where m ¼ 0; the q-chirplet is a peculiar
circumstance of an e-chirplet granted that m ¼ 1.
Once the e-chirplets are used as elementary
functions, the e-chirplet transform of any measur-
able and square-integrable signal sðtÞ 2 L2ðRÞ may
be readily defined as

ECTsðgÞ ¼ hs; qgi, (5)

where g ¼ ðtc; f c; log s; r;mÞ represents the para-
meter list and ‘‘h; i’’ denotes the Dirac inner
product.
The implementation of e-chirplet transform is

based on the matching pursuit due to Mallat [13],
and we devote a few lines to evoke the procedure
for later use. Similar procedures can also be found
in [10–12,34]. A matching pursuit algorithm is the
one that adaptively decomposes any signal under
analysis into a linear combination of a set of
elementary functions that are selected from a large
redundant (overcomplete) dictionary of elemen-
tary functions in accordance with the criterion of
maximum projection energy. These elementary
functions are chosen in order to best match the
signal’s local structures. Note that representing a
signal using an overcomplete dictionary of ele-
mentary functions is an inspiring challenge. Be-
sides the matching pursuit, several other
algorithms have also been proposed to attack this
representation and to measure its optimality, see
e.g., Daubechies’ method of frames [35], Coifman’s
best basis [36], and Chen and Donoho’s basis

pursuit [37].
Let H denote a Hilbert space, D ¼ fqggg2C be a

dictionary of vectors inH with kqgk ¼ 1 (where the
index g stands for the parameter list and C for the
parameter space). Let s 2 L2ðRÞ, qg0 2 D; then, the
signal s can be decomposed into

s ¼ hs; qg0
iqg0

þ Rs, (6)

where hs; qg0
iqg0

is the projection of s in the
direction of qg0 , Rs is its corresponding residual
signal. The matching-pursuit-based e-chirplet
transform is an iterative projection algorithm that
subdecomposes the residual signal Rs by projecting
it on a vector of D that matches Rs almost at best,
as was done for s in (6). After each iteration, an
e-chirplet that best matched the dominating
component of residual signal is selected. The
decomposition process is iterated until the residual
energy is below some threshold or until some other
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halting criterion is met. Let Rð0Þ
s ¼ s. Suppose that

we have finished k iterations; then, at the end of
(k þ 1)th iteration we obtain6

Rð0Þ
s ¼

Xk

i¼0

hRðiÞ
s ; qgi

iqgi
þ Rðkþ1Þ

s

¼
Xk

i¼0

Aiqgi
þ Rðkþ1Þ

s , ð7Þ

where Ai ¼ hRðiÞ
s ; qgi

i, gi ¼ ðtðiÞc ; f ðiÞ
c ;sðiÞ; rðiÞ;mðiÞÞ

represents the parameter list of the ith e-chirplet.
Since the energy of residual signal kRðkþ1Þ

s k2

monotonically decreases as k increases [13], i.e.,
limk!þ1kRðkþ1Þ

s k2 ¼ 0 (provided that the number
of samples is finite), it follows that

s ¼
Xþ1

i¼0

Aiqgi
, (8)

which is the formulation of the inverse e-chirplet
transform.
7The Morlet mother wavelet is rigorously defined as

p�1=4 expf�t2=2g½expfj2pf ctg � expf�ð2pf cÞ
2=2g�,

where f c is the center-frequency of the mother wavelet. The

second term in brackets is known as the correction term, as it

corrects for the nonzero mean of the complex sinusoid of the

first term. In practice, it becomes negligible for values of f cb0
4. Devising NN-WVD for e-chirplet transform

4.1. Theoretical derivation

The WVD of signal sðtÞ 2 L2ðRÞ is defined by

W sðt; f Þ ¼

Z 1

�1

s t þ
t
2

	 

sn t �

t
2

	 

e�j2pf t dt. (9)

It is now clear that the WVD is the standard
framework around which numerous TFDs are
fashioned. The WVD has many desirable proper-
ties and the ability to provide remarkable con-
centration in time and frequency, which
distinguishes the WVD from its counterparts.
Since the WVD of e-chirplet qgðtÞ does not have

a simple, closed-form expression, we consider
6If there appears to be any chance of confusion with the

power of a quantity, we will enclose the superscript in

parentheses to secure on a sound mathematical footing. Thus,

in what follows, RðiÞ
s designates the ith residual signal, whereas

ai designates a to the power i. Moreover, we also use a subscript

to denote a quantity with a specific nature (e.g., tc, where the

subscript c refers to center). This unfortunate notation may

create confusion with, say, gi but, fortunately, the subscript i is

traditionally reserved for the ith quantity; hence, gi refers to the

ith parameter set.
hereafter the special case wðtÞ, where wðtÞ ¼

qgðtÞjm¼0 (i.e., the wavelet case). If m ¼ 0 and the
window function gðtÞ is a normalized Gaussian
function

gtc;sðtÞ ¼ ðps2Þ�1=4 exp �
1

2

t � tc

s

	 
2 �
,

then (3) will reduce to a Morlet wavelet7

wtc;f c;log sðtÞ ¼ ðps2Þ�1=4 exp �
1

2

t � tc

s

	 
2 �

� exp j2pf c
t � tc

s

	 
n o
, ð10Þ

and (4) to a horizontal straight line

IFwðtÞ ¼
f c
s
. (11)

The WVD of (10) is given by

W wðt; f Þ ¼ 2 exp �ðsf � 2pf cÞ
2
�

t � tc

s

	 
2 �
,

(12)

which has elliptically shaped equiprobability con-
tours in the time–frequency plane. The contour for
the case where the levels are down to 1=C (where C

is a constant, C41) of their peak value A [A ¼ 2
as per (12)], is an ellipse, which is given by

f � 2pf c=sffiffiffiffiffiffiffiffiffiffiffiffi
log C

p
=s

 !2

þ
t � tcffiffiffiffiffiffiffiffiffiffiffiffi
log C

p
s

 !2

¼ 1, (13)
and can be ignored, in which case, the Morlet mother wavelet

can be written in a simple form as

p�1=4 expf�t2=2g expfj2pf ctg.

This wavelet is simply a complex sinusoid within a Gaussian

envelope. Note that the simple Morlet mother wavelet is not

strictly a wavelet as it has nonzero mean, i.e., the zero frequency

term of its corresponding energy spectrum is nonzero and hence

it is inadmissible. However, it can be used in practice with f cb0

with minimal error. A more detailed overview of the definitions

of wavelet functions can be found in [38].
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with its radii of major axes given by

lT ¼
ffiffiffiffiffiffiffiffiffiffiffi
logC

p
s; lF ¼

ffiffiffiffiffiffiffiffiffiffiffi
logC

p
=s. (14)

To find the explicit expression of NN-WVD for
the ith e-chirplet, we simply perform the SAT Xa;z

on the WVD (12) of the ith Morlet wavelet,
yielding

$qgi
ðt; f Þ ¼ W wi

ðXaðiÞ;zðiÞðtÞðt; f ÞÞ

¼ W wi
ðt; f þ zðiÞðtÞ � aðiÞÞ

¼ 2 exp � ½sðiÞðf þ zðiÞðtÞ � aðiÞÞ

(

�2pf ðiÞ
c �

2 �
t � tðiÞc
sðiÞ

� �2
)
, ð15Þ

where zðiÞðtÞ ¼ IFqgi
[refer to (4)] and aðiÞ ¼

IFwi
ðtÞ ¼ f ðiÞ

c =s
ðiÞ [refer to (11)].

If a signal sðtÞ has P the best-matched elemen-
tary functions (provided that we have performed P

iterations of decomposition), then we immediately
have

$sðt; f Þ ¼
XP�1
i¼0

jAij
2 	$qgi

ðt; f Þ, (16)

which can be paraphrased as follows: For each
iteration, we get a different best-matched e-chirplet
and a corresponding NN-WVD, the totality of
these NN-WVDs gives us a TFD for the signal
under analysis.

4.2. Implementation

We have implemented a straightforward algo-
rithmic procedure in MATLABs that allows to
calculate the NN-WVD of any Gaussian wind-
owed parametric elementary function. The tract-
able algorithm proceeds as follows:

NN-WVD Algorithm

1. Initialization: Generate an L-by-L matrix of
zeros $sðt; f Þ, where L is the length of the signal
sðtÞ.
2. E-Chirplet transform: Calculate the e-chirplet
transform based on matching pursuit, save the
resulting parameters for P matched e-chirplet: Ai,

gi ¼ ðtðiÞc ; f ðiÞ
c ;sðiÞ; rðiÞ;mðiÞÞ, i ¼ 0; 1; 2; . . . ;P � 1.
3. Calculate NN-WVD: For iterations
i ¼ 0; 1; 2; . . . ;P � 1

(1) Generate an L-by-L matrix of zeros $qgi

ðt; f Þ;
(2) Calculate the zðiÞðtÞ ¼ IFqgi
ðtÞ for ith e-chirplet

using (4);
(3) Calculate aðiÞ ¼ IFwi
ðtÞ for ith Morlet wavelet

using (11);

(4) Calculate the W wi

ðt; f Þ for ith Morlet wavelet

wiðtÞ using (12);

(5) Determine the lengths of two neighboring
sides of the parallelogram surrounding W wi

ðt; f Þ

according to (14) as 2l
ðiÞ
T and 2l

ðiÞ
F , respectively;
(6) Calculate the $qgi
ðt; f Þ for ith e-chirplet qgi

ðtÞ

using (15). This step can be done simply as
follows [other than directly manipulating (15)].

At each time instant t, t 2 ½tðiÞc � l
ðiÞ
T ; tðiÞc þ l

ðiÞ
T �, let

$qgi
ðt; f Þ ¼ W wi

ðt; f 0
Þ, where

f 2 ½IFqgi
ðtÞ � l

ðiÞ
F ; IFqgi

ðtÞ þ l
ðiÞ
F �,

f 0
2 ½IFwi

ðtÞ � l
ðiÞ
F ; IFwi

ðtÞ þ l
ðiÞ
F �;
(7) $sðt; f Þ ¼ $sðt; f Þ þ jAij
2 	$qgi

ðt; f Þ.

5. Examples

This section presents three application results
using two kinds of highly nonstationary signals in
support of the methodology advocated. The first
example performs a qualitative comparison be-
tween the e-chirplet-based NN-WVD, the STFT-
based spectrogram, the WVD, and the q-chirplet-
based WVD using a bat sonar signal. The next two
examples compare the analysis results of WVD
with that of NN-WVD using a computer-gener-
ated Doppler signal and a recorded real-world
Doppler signal, respectively.

Example 1. It is difficult to compare different
methods for computing TFDs since there is no
clear measure of the ‘‘goodness’’ of a TFD, we will
present pictures of the TFDs obtained by using
different methods and provide a qualitative
comparison of their abilities to characterize the
signal’s time-varying structures. In order to
achieve as fair a comparison as possible, the
dynamic ranges of the images are the same within
each TFD. Now that the 2:5ms echolation pulse



ARTICLE IN PRESS

8In [7], Mann describes another three-parameter d-chirplet

representation that models a source producing a sinusoidal

wave while moving along a straight line. The three parameters

are center frequency, maximum rate of change of frequency,

and frequency swing.

H. Zou et al. / Signal Processing 85 (2005) 1813–18261820
emitted by the large brown bat Eptesicus fusus is
becoming the de facto standard signal for evaluat-
ing the merit of a proposed TFD in the realm of
time–frequency analysis (the signal is highly
nonstationary). Just like the ‘‘Lena’’ image for
benchmarking different approaches to image
processing, we will test different TFDs with this
bat sonar signal. Fig. 2(a) depicts the waveform of
the bat sonar signal (with a normalized time–-
bandwidth product T � B ¼ 226:7643b1). Fig.
2(b) is the STFT-based spectrogram (squared
magnitude of STFT) with a Hamming window of
length 101 points. A common shortcoming with
spectrograms is however their poor time–fre-
quency concentration. Fig. 2(c) illustrates the
WVD. The time–frequency concentration of
WVD is considered to be optimal, but its inherent
cross-term interference can adversely affect its
performance and may potentially lead to confu-
sion and misinterpretation. Note that both the
spectrogram and the WVD show how the
frequency components of the signal change over
time, but both of them produce some seemingly
bizarre results, which are nonetheless true because
of their inherent cross-terms. Fig. 2(d) plots a
decomposition result of the four parameter q-
chirplet transform [10,11]. Although this sort of
TFD (obtained by summing the WVDs of the first
five weighted matched Gaussian q-chirplets) is
nonnegative and has optimal time–frequency
concentration, the distortion in characterizing the
time-varying structures is also salient, since, as can
be seen from Figs. 2(b) and (c), two components of
the bat sonar signal are inherently not the q-
chirplets, they are more like the whistlers or gliding

tones. Circumventing this drawback was a major
motivation for our proposing the e-chirplet trans-
form. The energy of the corresponding residual
signal is 8:75% better than that reported in [10]
(where the value is 10% and ten Gaussian q-
chirplets are needed). Fig. 2(e) is the decomposi-
tion results based on the Gaussian e-chirplet
transform, that is obtained by directly summing
the NN-WVDs of the first five matched Gaussian
e-chirplets. As can be seen in this example, the
resulting distribution outperforms the spectro-
gram, WVD, and q-chirplet transform and, there-
fore, offers a better understanding of the nature of
the bat sonar signal. Fig. 2(f) plots the residual
signal (obtained by subtracting the first five
weighted matched Gaussian e-chirplets from the
original signal), where the ratio between the energy
of the remainder and that of the original signal is
7.06%.

Example 2. The d-chirplet (for the subsonic case)
[19–22] is a windowed, translated, and dilated
Doppler signal defined by8

dgðtÞ ¼ dtc;f c;logs;l;v;uðtÞ

¼
1ffiffiffi
s

p g
t � tc

s

	 


� exp j2pu u þ
v2ðt � tc=sÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ v2ðt � tc=sÞ
2

q
2
64

3
75
�18><

>:
�f c

t � tc

s

	 
9>=
>;. ð17Þ

Clearly, such an elementary function is dictated
by, besides the shape of window function gðtÞ (also
known as ‘‘mother d-chirplet’’), the following six
free parameters each of which has an intuitively
satisfying physical significance: time-center tc,
frequency-center f c, log-duration log s, distance l

between the observer and the line that the source
moves along, source speed v, and wave propaga-
tion speed u.

A joint time–frequency analysis of such an
elementary function when gðtÞ is Gaussian, is
plotted in Fig. 3, where the TFD is WVD. As can
be seen from this figure, although the signal
component is well concentrated in the time-
frequency plane, numerous cross-terms appear at
positions in time and frequency, where the energy
is expected to be null.
To devise an NN-WVD for the d-chirplet

signal, we use the same procedure as narrated in
Section 4. The main differences between an
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Fig. 2. Bat sonar signal and its TFDs: (a) waveform; (b) STFT-based spectrogram; (c) WVD; (d) q-chirplet-transform-based WVD; (e)

e-chirplet-transform-based NN-WVD; (f) residual signal (Data courtesy of http://www-dsp.rice.edu/software/tfa.shtml).
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e-chirplet and a d-chirplet are the number of
parameters and the frequency behavior of their
IFs. By referring to (17) we see that, if the source
speed v ¼ 0, then the Gaussian d-chirplet will
reduce to Morlet wavelet. As explained in
Section 1, the instantaneous powers of a wavelet

http://www-dsp.rice.edu/software/tfa.shtml
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Fig. 3. Joint time–frequency analysis, showing the traditional

power spectral density [(PSD), obtained using Welch’s averaged

periodogram method] to the right of and time waveform below

the WVD of a Gaussian d-chirplet. The cross-terms of the

WVD are troublesome both in analysis and synthesis.
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Gaussian d-chirplet used in Fig. 3. The cross-terms now

disappear while simultaneously the auto-term is optimally

reserved.
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Fig. 5. From top to bottom: time marginal of WVD, time

marginal of NN-WVD, difference between the two time

marginals (which is zero everywhere), frequency marginal of

WVD, frequency marginal of NN-WVD, and the difference

between the two frequency marginals of the signal shown in

both Figs. 3 and 4. For the first three subfigures, the horizontal

axis corresponds to time (in s) and the vertical axis to

magnitude. For the last three subfigures, the horizontal axis

corresponds to frequency (in Hertz) and the vertical axis to

energy spectral magnitude. As can be seen from this figure, after

semi-affine transforming the time–frequency plane, only the

time marginal is exactly preserved; the frequency marginal is

only approximately retained.
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and a d-chirplet are identical if their window
functions are the same. Fig. 4 displays the NN-
WVD of the same Gaussian d-chirplet signal, that
yields a nonnegative and cross-term free TFD with
its concentration identical to that of WVD. Note
that the same issue is discussed in [6], where the
sixth- and eighth-order polynomial WVDs, respec-
tively, are used for a Doppler signal, but,
unfortunately, the cross-terms are still present
and noticeable.
Fig. 5 shows (from top to bottom), respectively,
the time marginal of WVD [defined byR1
�1

W sðt; f Þdf ], time marginal of NN-WVD
[defined by

R1
�1

$sðt; f Þdf ], difference between
the two time marginals, frequency marginal of
WVD [defined by

R1
�1

W sðt; f Þdt], frequency
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marginal of NN-WVD [defined by
R1
�1

$sðt; f Þdt],
and the difference between the two frequency
marginals of the signal sðtÞ shown in both Figs. 3
and 4. As can be seen from this figure, the time
marginal of NN-WVD is identical to that of WVD
(this is a direct consequence of Theorem 2) and
both of them are identical to the instantaneous
power (as stated in Section 1); the frequency
marginal of NN-WVD slightly differs from that of
WVD. The energy of WVD [defined byR1
�1

R1
�1

W sðt; f Þdtdf ] is 340.0334 and the energy
of NN-WVD [defined by

R1
�1

R1
�1

$sðt; f Þdtdf ] is
340.0332; hence, a preservation of energy con-
servation property under the SAT (as anticipated
by Theorem 2).

Example 3. In this example, we consider a more
realistic application of NN-WVD for measuring
the Doppler-shifted frequencies.

To help illustrate the experiment system, a
schematic diagram is shown in Fig. 6. We carried
out the experiment in a day May, 1–5 h after a
thunder storm. The car moved along a straight line
at a constant speed 19.5m/s (which was obtained
from averaging the GPS speed data) and a
loudspeaker (mounted on a car) emitted a 3003-
Fig. 6. Arrangement for measuring the motion parameters of a

car moving in a straight path.
Hz pure tone. During the time of recording, the
temperature was 18:5 �C, barometric pressure was
99 414 Pa, and the relative humidity was 67:5%,
therefore, the theoretical sound speed for the given
atmospheric data was 343.3m/s. (For an easy
reference of how to calculate the sound speed, see
Appendix C.A of [22].)
Fig. 7 displays the WVD of the recorded sound

signal. As can be seen in this figure, the signal of
interest is embedded in a strong background noise
so that it is very difficult for WVD to resolve
it. Since the sound sources (including the loud-
speaker, rotating and vibrating machinery parts of
the moving car, and the friction between the car
and air, etc.) generate the same frequency warping
laws (note that these frequency warping laws differ
only by their center-frequencies and center-times),
in our case of estimation of range and speed using
the d-chirplet transform, only one dominating
signal component is sufficient for estimating
the range and speed of the sound source. This
means that we need only perform the iteration
once. The dominating signal component is
automatically searched because of the intrinsic
 t /s
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Fig. 7. WVD of an airborne acoustic signal. The WVD is a

smudged blur and an incomprehensible mess due to the

notorious cross-terms and background noise (mechanical

rotation and vibration of the moving car, friction between car

and air, traffic noise, and the rustle of leaves, etc.). It is very

hard to estimate the Doppler-shifted frequencies from this

figure, or to see what really happened in the vicinity of time-

center and frequency-center.
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selection mechanism of maximum projection en-
ergy of the matching pursuit algorithm.
Fig. 8 graphs the NN-WVD of the matched

dominating signal component. Comparing Fig. 8
with Fig. 7 we see that the WVD in Fig. 7 is
incomprehensible due to cross-terms and back-
ground noise, whereas the NN-WVD shown in
Fig. 8 is everywhere nonnegative and clearly
depicts the time-varying nature of the signal. The
Doppler-shifted frequencies can be read directly
from the NN-WVD using the cross-cursor as 3181
and 2847Hz, respectively, on account of the clear
visual appearance and high time–frequency con-
centration of the NN-WVD. From the sound
speed u ¼ 343:3m=s and the Doppler-shifted
frequencies

f c
1� v=u

¼ 3181Hz;
f c

1þ v=u
¼ 2847Hz,

we immediately know that the car moved at a
constant speed of 19.0m/s and the loudspeaker
emitted a wave of frequency 3004Hz, all of which
agreed very closely with the accurately monitored
real data.
 t /s
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Fig. 8. NN-WVD of the matched dominating signal compo-

nent of the airborne acoustic signal shown in Fig. 7. The NN-

WVD is nonnegative everywhere and clearly depicts how the

frequency contents of the interested signal vary with time. The

Doppler-shifted frequencies can be read directly from the NN-

WVD as 3181 and 2847Hz.
6. Concluding remarks

In this paper, we proposed a new group called
‘‘semi-affine transformation (SAT) group’’ and
devised a new TFD called ‘‘nonnegative Wigner–-
Ville distribution (NN-WVD)’’ for displaying the
decomposition results of parametric TFRs. The
initial impetus for devising the NN-WVD came
from the facts that the Morlet wavelet is a
special case of both e-chirplet and d-chirplet, and
that the WVD of Morlet wavelet is nonnegative
and cross-term free. The method of using SAT to
construct an NN-WVD is to migrate the values of
WVDs of Morlet wavelets to the positions
of IFs of the matched elementary functions
(e.g., e-chirplet or d-chirplet. The choice of
different types of elementary functions depends
on the specific application at hand and on the
representation properties that are desirable
for this application) for different signal
components. The relative merits and the usefulness
of NN-WVD are twofold: (1) the NN-WVD is
nonnegative and cross-term free (the cross-terms
in the WVD of elementary function with
nonlinearly varying frequencies are annihilated,
while the auto-terms are barely affected); (2) the
concentration of NN-WVD is identical to
that of WVD. Therefore, the NN-WVD is more
flexible and advantageous for delineating the time-
varying spectral contents of a nonstationary
signal.
A fly in the ointment, whether or not we will

concede, is that the NN-WVD requires to know
the IFs of the signal components in advance. Since
we position the calculation of NN-WVD to a post-
processing episode for parametric TFR hunting,
this is not much of a problem, as the IFs of the
signal components are assumed to be given after
the calculation of a parametric TFR.
Moreover, our restriction of applications to e-

chirplet and d-chirplet transforms in this paper is
by no means a limitation. Indeed, the presentation
of the SAT principle allows a straightforward
extension of its use to many other parametric
TFRs, e.g., the ones that use w-chirplets (warbling
chirplets) [7], p-chirplets (projective chirplets) [7],
splines [39], and the polynomial phase elementary
functions [40].
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