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Abstract

The problem of how to retrieve Euclidean entities of a 3D scene from a single uncalibrated image is studied in this paper. We first present

two methods to compute the camera projection matrix through the homography of a reference space plane and its vertical vanishing point.

Then, we show how to use the projection matrix and some available scene constraints to retrieve geometrical entities of the scene, such as

height of an object on the reference plane, measurements on a vertical or arbitrary plane with respect to the reference plane, distance from a

point to a line, etc. In particular, the method is further employed to compute the volume and surface area of some regular and symmetric

objects from a single image, the undertaking seems no similar report in the literature to our knowledge. In addition, all the algorithms are

formulated in an explicit and linear geometric framework, and the involved computation is linear. Finally, extensive experiments on

simulated data and real images as well as a comparative test with a closely related method in the literature validate our proposed methods.

q 2005 Elsevier B.V. All rights reserved.
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1. Introduction

One of the main aims of Computer Vision is to take

measurements of the environment and reconstruct its 3D

model. The problem of using vision technique to measure

geometrical entities in the world has attracted a lot

of attention and received wide applications in recent years

[1,3,5], such as architectural and indoor measurement,

reconstruction from paintings, forensic measurement and

traffic accident investigation. Traditional approach to

measurement is to take all the distances manually by

using metric tapes or rulers or by some special devices such

as ultrasonic devices, laser range finder, etc. These

approaches are time consuming, prone to errors and

invasive. With computer vision based methods, what one

needs to do is only to take several pictures, then all

measurements can be done offline with more accuracy,

flexibility and efficiency. There are several potential

advantages for this kind of approaches [1]. First, it is user
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friendly. Once the images are taken, users can take

measurements desktoply and store them in a database.

Second, the data acquisition process is rapid, simple and

minimally invasive, since it only involves a camera to take

pictures of the environment to be measured. Third, the

acquired data are stored digitally in a disk ready for reuse at

any time without going back to the original scene when new

measurement are needed.

Generally speaking, the methods of computer vision

based measurements in the literature may be broadly

divided into two categories. The classical method is to

reconstruct the metric structure of the scene from two or

more images by stereovision techniques [6–9]. If we can

obtain the Euclidean reconstruction of a scene, then any

geometrical information about the scene can be retrieved

accordingly. However, the Euclidean reconstruction is a

hard task due to the problem of seeking correspondences

from different views. In addition, the errors introduced by

matching and camera calibration may propagate along the

computational chain and cause a loss of accuracy to the final

results.

The other one is to directly use a single uncalibrated

image [3,4,10]. It is well known that only one image cannot

provide enough information for a complete 3D
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reconstruction. However, some metrical quantities can be

inferred directly from one image under the knowledge of

some geometrical scene constraints such as planarity of

points and parallelism of lines and planes. In [2], a

homography based approach to distance measurement on

a world plane was proposed, where the homography was

computed from four specified control points on the plane.

The same problem was also discussed in [5], where several

other approaches to recovering the homography and taking

measurement on a space plane were proposed. In [3], the

authors described another approach to compute 3D affine

measurement from a single perspective image. It is assumed

that the vanishing line of a reference plane in the scene as

well as a vanishing point in a reference direction can be

determined from the image, then three canonical types of

measurements (i.e. distances between any plane which are

parallel to the reference plane, area and length ratio on these

planes and the camera’s position) can be computed. In

[11–14], some methods were also investigated for object

reconstruction from measurements in a single view both in

computer vision community and photogrammetric commu-

nity. These methods were based on the constraints of the

object to be reconstructed, such as edges, coplanarity,

parallelism, perpendicularity, etc.

In this paper, we mainly investigate the problem on single

view metrology and propose some novel approaches to the

recovery of geometrical information in a 3D scene. We first

propose two new methods to retrieve the projection matrix

from certain available scene constraints, while the geometri-

cal information is computed directly from the projection

matrix and a prior knowledge of the scene. We show how to

(i) compute height of an object on the reference plane; (ii)

take measurements on a vertical and arbitrary plane with

respect to the reference plane; (iii) compute other geometri-

cal entities, such as distance from a point to a plane, angle

formed by two lines or two planes, distance from a point to a

line, etc. In particular, we show how to apply the method to

compute volume and surface area of some regular and

symmetric objects from a single image. To our knowledge,

there is no similar study reported in the literature.

Compared with other methods, we try to make fully use

of the available scene constraints and recover more metric

measurements, rather than affine entities as shown in [1,3].

All the algorithms involved in the paper are organized in an

explicit and linear geometric framework, which is easy to

implement. We also carry out some comparative tests with

Criminisi’s method [3].

The remaining parts of this paper are organized as

follows: In Section 2, some preliminaries on projection

matrix and homography are briefed. Then the methods for

projection matrix computation are presented in Section 3. In

Section 4, the novel approaches to the recovery of

geometrical entities in the scene are elaborated. The test

results with simulated data and real images are presented in

Sections 5 and 6, respectively. Some conclusions are drawn

at the end of this paper.
2. Some preliminaries

In order to facilitate our discussions in the subsequent

sections, some preliminaries on camera projection matrix

and homography are presented here. Please refer to Hartley

[8] for more details. In this paper, the following notations

are used: a point in space or image is denoted by a bold

lower case letter, e.g. x, while its corresponding homo-

geneous vector is denoted by ~xZ ½xT;w�T, and (x)i stands

for the ith element of the vector x; A matrix is denoted by a

bold upper case letter, e.g. P, and Pi stands for the ith

column vector of the matrix P, while Pi,j for an element in

the ith row and jth column of P; ‘z’ means equality up to a

nonzero scale.

2.1. Camera projection matrix

Under the pinhole camera model, a 3D point x in space is

projected to an image point m via a 3!4 projection matrix

P as

s ~m Z P ~x Z K½R; t� ~x Z ½P1;P2;P3;P4� ~x (1)

where, s is an unknown nonzero scalar; K is the camera’s

intrinsic matrix; R and t are the rotation matrix and

translation vector of the camera coordinate system to the

world system.

Lemma 1. The first three columns of projection matrix P
are images of the vanishing points corresponding to the

world coordinate axes X, Y and Z, respectively, and

the last column P4 is the image of the origin of the world

system.

Proof. In the world coordinate system, the direction of X-,

Y- and Z-axes can be expressed as ~xwZ ½1; 0; 0; 0�T,

~yw Z ½0; 1; 0; 0�T, ~zw Z ½0; 0; 1; 0�T, respectively, the homo-

geneous form of the world origin is ~ow Z ½0; 0; 0; 1�T. Thus,

it is easy to verify that:

~vx zP ~xw Z ½P1;P2;P3;P4�½1; 0; 0; 0�
T Z P1

~vy zP ~yw Z ½P1;P2;P3;P4�½0; 1; 0; 0�
T Z P2

~vz zP~zw Z ½P1;P2;P3;P4�½0; 0; 1; 0�
T Z P3

~ox zP ~ow Z ½P1;P2;P3;P4�½0; 0; 1; 0�
T Z P4

,

Lemma 2. Given a point m in an image, its back-projection

is a ray in space passing through the camera center and the

point m, i.e. LbZ fxjs ~mZP ~x; x2R3g.

Lemma 3. Given a line l in an image, its back-projection

spans a plane in space passing through the camera center

and the line l, which is defined as PZPTl.

One of the major advantages of using the full 3!4

projection matrix is that it is not necessary to think of
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the image as occupying a particular position in space with

respect to the object. The image can be a thousand miles

away from the object, while the projection matrix can still

be used.
2.2. Plane to plane homography

Suppose there is a plane in the scene, without loss of

generality, we set X- and Y-axes of the world coordinate

system on the plane, then for a point on the plane, Eq. (1)

becomes:

s

u

v

t

2
64

3
75 Z P

x

y

0

w

2
6664

3
7775 Z ½P1;P2;P4�|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}

H

x

y

w

2
64

3
75

Z

h11 h12 h13

h21 h22 h23

h31 h32 h33

2
64

3
75 x

y

w

2
64

3
75 (2)

Hence, the projection from a point on the plane to its

image is simplified as

s ~m Z H ~x (3)

where, HZ ½P1;P2;P4� is called plane to plane homo-

graphy. Usually, H is a non-singular 3!3 homogeneous

matrix (degeneracy occurs if and only if camera center is on

the space plane) with 8 degrees of freedom because it can

only be defined meaningfully up to a scaling factor.

According to Eq. (2), each image-to-world point correspon-

dence can give rise to two independent linear constraints on

the nine elements of H. Thus, the homography can be

uniquely determined form four general coplanar space

points (no three points are collinear) and their corresponding

image points. If more than four pairs of such correspon-

dences are given, H may be estimated by a suitable

minimization scheme [1,8].

Lemma 4. The homography can also be defined by line

correspondences, i.e. sLZHTl, with L a line in space and l
the corresponding image. Hence, given four coplanar line

correspondences in general position (i.e. no three lines are

concurrent), the homography can be determined uniquely.

Once the homography matrix between the world and

image plane is determined, an image point can be back-

projected to a point on the world plane via HK1. Hence the

real distance between two image points on the plane can

then be simply computed from the Euclidean distance

between their back-projected 3D points. This is the basic

principle of plane metrology [2].
3. Projection matrix recovery from scene constraints

In the following discussion, we assume that homography

H of a reference plane, together with the vanishing point ~vz

of the direction perpendicular to the reference plane (called

vertical vanishing point later), may be inferred directly from

the image of the scene to be measured. This assumption is

feasible in practice as illustrated in Section 6 and our early

study in [5]. Since HZ ½P1;P2;P4�, P3 Zl ~vz, the projection

matrix PZ ½P1;P2;P3;P4� can be recovered easily once the

nonzero scalar l is determined.
3.1. Case for a simplified camera model

Generally speaking, there are five intrinsic parameters

for a pinhole camera model, and the camera matrix is in the

form of
K Z

fu s u0

0 fv v0

0 0 1

2
64

3
75;
where, fu, fv represent the camera’s focal length correspond-

ing to the u- and v-axes of camera coordinates, ½u0; v0�
T is

the coordinates of camera’s principal point, sZ fuctgq refers

to the skew factor with q the included angle of the two axes

of the image system. For some high quality CCD camera,

the two axes are perpendicular to each other, i.e. q/908,

thus the skew may be set to zero and the camera is simplified

to have only four intrinsic parameters.

Proposition 1. The camera projection matrix P can be

uniquely determined from the homography H and the

vertical vanishing point ~vz in case of a simplified camera

model with zero skew.

Proof. Decompose the projection matrix into a 3!3 sub-

matrix M and a 3-vector P4, i.e. PZ ½M;P4� with

MZ ½P1;P2;P3�Z ½P1;P2; l ~vz�, then we have
C Z MMT Z ½P1;P2; l ~vz�

PT
1

PT
2

lvT
z

2
664

3
775

Z P1PT
1 CP2PT

2 Cl2 ~vz ~v
T
z Z ½Ci;j�3!3 (4)
where, Ci;jZPi;1Pj;1CPi;2Pj;2Cl2vivj, vi is the ith element

of ~vz. On the other hand, MZaKR, with a a nonzero scalar

and R the orthonormal rotation matrix, i.e.

RRTZdiagð1; 1; 1ÞZI. Hence, Eq. (4) is equivalent to



3;1v2v3 KP1;2P3;2v2v3 KP2;1P3;1v1v3 KP2;2P3;2v1v3

;2P2;1P2
3;1

:
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the following form:

C Z MMT Z a2KRRTKT Z a2KKT

Z a2

fu 0 u0

0 fv v0

0 0 1

2
64

3
75

fu 0 0

0 fv 0

u0 v0 1

2
64

3
75

Z a2

f 2
u Cu2

0 u0v0 u0

u0v0 f 2
v Cv2

0 v0

u0 v0 1

2
664

3
775 (5)

Equation C1;2C3;3ZC1;3C2;3 holds by comparing the above

two equations, from which the scalar can be solved as

lZG
ffiffiffiffiffiffiffi
b=a

p
, where:

a Z P1;1P2;1v2
3 CP1;2P2;2v2

3 Cv1v2P2
3;1 Cv1v2P2

3;2 KP1;1P

b Z P1;1P2;2P3;1P3;2 CP1;2P2;1P3;1P3;2 KP1;1P2;1P2
3;2 KP1

(

Note that only one of the two solutions of the scalar is

reasonable. Since, detðMÞO0 as the objects must lie in

the front of camera, the true solution can be determined

from this constraint and the projection matrix is finally

recovered.
3.2. Case for a general camera model

Numerical test in Section 5 shows that the influence of

the skew factor to the distance measurement is significant

when s is not near to zero. In this case, a general camera

model with five intrinsic parameters should be adopted.

Proposition 2. The camera projection matrix P can be

uniquely determined from the homography H, the vertical

vanishing point ~vz and a vertical reference length z0 in case

of a general camera model.

Proof. Without loss of generality, select the world

coordinate system as shown in Fig. 1, with the O–XY

plane lying on the reference plane. Suppose the two end

points of the reference length are x and x 0 with x on the

reference plane, the corresponding points in the image are
vz
~

O

X
Y

Z

x=[x0,y0,0 ]T

x′=[x0,y0,z0]T

π0

Fig. 1. Reference plane p0, vertical vanishing point vz and a vertical

reference segment on the plane.
~mx Z ½ux; vx; 1�
T, ~m0

x Z ½u0
x; v

0
x; 1�

T, respectively. Then from

~xZsHK1 ~mx, it is easy to retrieve the coordinates of point

xZ ½x0; y0; 0�
T, so the coordinates of point x 0 must be

x0Z ½x0; y0; z0�
T. From

s ~m0
x Z P ~x0 Z ½P1;P2; l ~vz;P4�

~x0 (6)

we can obtain the following equation system by eliminating

the nonzero scalar s

Al Z b (7)

where

A Z
v1z0 Kv3u0

xz0

v2z0 Kv3v0xz0

" #
;

bZ
P3;1u0

xx0 CP3;2u0
xy0 CP3;4u0

x KP1;1x0 KP1;2y0 KP1;4

P3;1v0xx0 CP3;2v0xy0 CP3;4v0x KP2;1x0 KP2;2y0 KP2;4

" #
:

So l may be solved by means of least-square technique

as:

lZðATAÞK1ATb (8)

,

The projection matrix obtained here represents a

general projective camera, so it is straightforward to

retrieve the camera parameters by decomposition of P.

For example, let PZ ½M;P4�, then the camera matrix K
and the rotation matrix R can be recovered by

decomposing M into MZKR using RQ-decomposition;

the translation vector tzKK1P4; and the camera center is

at CZMK1P4.
4. Methods for geometrical information recovery

In this section, we will present some novel methods for

scene measurements directly from the recovered projection

matrix and some scene constraints.

4.1. Height measurement

Suppose x and x 0 are the two end points of the object to

be measured, with x on the reference plane, refer to Fig. 1.

Let the image points of x and x 0 be ~mx Z ½ux; vx; 1�
T and

~m0
xZ ½u0

x; v
0
x; 1�

T, respectively. Suppose the coordinates of

point x in homogeneous form is ~xZ ½x0; y0; 0; 1�
T, the height

of the object is z0, then we have ~x0Z ½x0; y0; z0; 1�
T, with x0,

y0, z0 three unknowns. Our goal is to compute the height z0.

Since
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s1 ~mx Z P ~x Z ½P1;P2;P3;P4� ~x

s2 ~m0
x Z P ~x0 Z ½P1;P2;P3;P4� ~x

0

(
(9)

expand the above equations and eliminate the two scalars s1,

s2, we have

A

x0

y0

z0

2
4

3
5 Z b (10)

where

A Z

P1;1 KP3;1ux P1;2 KP3;2ux 0

P2;1 KP3;1vx P2;2 KP3;2vx 0

P1;1 KP3;1u0
x P1;2 KP3;2u0

x P1;3 KP3;3u0
x

P2;1 KP3;1v0x P2;2 KP3;2v0x P2;3 KP3;3v0x

2
666664

3
777775;

b Z

P3;4ux KP1;4

P3;4vx KP2;4

P3;4u0
x KP1;4

P3;4v0x KP2;4

2
66664

3
77775:

Thus, height z0 can be obtained via least squares as:

z0 Z ððATAÞK1ATbÞ3 (11)

4.2. Measurement on vertical plane

As shown in Fig. 2, p0 is the reference plane, p1 is the

vertical plane perpendicular to p0 and intersects p0 at line L.

Denote the coordinates of p1 as P1Z ½a1; b1; c1; d1�
T, we

say a point ~vZ ½x; y; z; 1�T is in p1 if and only if PT
1 ~vZ0.

Proposition 3. For the configuration of Fig. 2, let

P1Z ½a1; b1; c1; d1�
T, and suppose l is the corresponding

image of L, then a1 Z ðHTlÞ1, b1Z ðHTlÞ2, c1Z0,

d1Z ðHTlÞ3.

Proof. Since p0 is coincident with the O–XY-plane, and the

vertical plane p1 is parallel to OZ-axis, it is clear that the

coordinates of plane p0 is P0 Z ½0; 0; 1; 0�T, and c1Z0.

From Lemma 4, we have lZsHKTL, thus the following
π0

π1

πp

xi

O

X
Y

Z

L1 L2

L

Fig. 2. Measurement on vertical plane p1 and arbitrary plane pp.
equations hold true up to a common scalar factor.

a1 Z ðHTlÞ1; b1 Z ðHTlÞ2; d1 Z ðHTlÞ3 (12)

i.e. the coordinates of plane p1 is:

P1Z ½ðHTlÞ1; ðH
TlÞ2; 0; ðH

TlÞ3�
T. ,

For a point xi on the vertical plane p1, suppose miZ
½ui; vi�

T is its corresponding image, then the coordinates of

xi can be retrieved by the intersection of the back-projected

ray of image point mi and the plane p1, i.e.

si ~mi Z P ~xi

PT
1 ~xi Z 0

(
(13)

eliminate scalar si and reorganize the above equation into a

linear system in form of

Axi Z b (14)

where

A Z

P1;1 KP3;1ui P1;2 KP3;2ui P1;3 KP3;3ui

P2;1 KP3;1vi P2;2 KP3;2vi P2;3 KP3;3vi

a1 b1 c1

2
64

3
75;

b Z

P3;4ui KP1;4

P3;4vi KP2;4

Kd1

2
64

3
75:

Thus, the coordinates of the point xi can be computed

directly from the above equation.
4.3. Measurement on arbitrary plane

Suppose an arbitrary plane pp intersect the reference

plane p0 at line L (still refer to Fig. 2), then all the

space planes passing through line L form a pencil, and

the pencil of planes may be expressed as

PpZP1ClP0Z ½ðHTlÞ1; ðH
TlÞ2; l; ðH

TlÞ3�
T, where P0Z

½0; 0; 1; 0�T is the coordinates of the reference plane, P1Z
½ðHTlÞ1; ðH

TlÞ2; 0; ðH
TlÞ3�

T is that of the vertical plane

passing through L. Thus, the plane pp is defined up to only

one unknown parameter l.

Proposition 4. The coordinates of plane pp can be

determined from the image of a pair of parallel lines in

the plane.

Proof. Suppose PpZ ½ap; bp; cp; dp�
T, then apZ ðHTlÞ1,

bpZ ðHTlÞ2, cpZl, dpZ ðHTlÞ3. Denote the parallel lines

in space and their corresponding images as L1, L2 and l1, l2,

respectively, denote the intersection of L1 and L2 as vp,

which is located at infinity, then its image (i.e. the

intersection of l1 and l2) can be computed as
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~viZ l1 !l2Z ½ai; bi; ci�
T, From equation (1), we have:

s ~vi Z P ~vp Z ½M;P4�
vp

0

" #
Z Mvp (15)

On the other hand, vp lies on the plane pp, i.e.

PT
p ~vp z½ap; bp; l�M

K1½ai; bi; ci�
T Z 0 (16)

Thus, l can be easily computed from the above equation.

After retrieving the coordinates of the plane pp, we can take

measurements on the plane in a similar way as shown in

Section 4.2. ,

Remark 1. If some other prior information in the arbitrary

plane, such as a reference distance, two orthogonal lines, etc.

can be retrieved from the image, the scalar l, as well as the

coordinates of theplane, can alsobecomputed ina similarway.

Remark 2. For a point in the reference plane, its coordinates

can be retrieved directly from the homography, this allow us

to compute the distance between any pair of two points, with

each lying on one of the two planes.
4.4. Volume and surface area measurement

Based on the above discussion, we can also retrieve the

volume and surface area of some regular and symmetric

objects, such as a cylinder, circular cone, cube, pyramid,

sphere, etc. Fig. 3 shows an image of a truncated circular

cone in the reference plane, we will take it as an example to

outline the algorithm.

(i) Fit the two image conics Cu and Cl. The upper and

lower surfaces of a truncated cone are imaged as

conics, and the conics can be fitted by the visible

contour of the cone by Hough transform and other

robust algorithm.

(ii) Compute the vanishing line lN of the reference

plane: The vanishing line of the reference plane is:

lNZsHKTLN, with LNZ ½0; 0; 1�T.

(iii) Retrieve the two conic centers ou and ol. Since the

upper and lower surfaces of the truncated cone are

parallel, they share the same vanishing line lN in the

image, while the conic center is the pole of the

vanishing line with respect to the conic. Hence, we

have ~ouZCK1
u lN, ~olZCK1

l lN
π0

ou

ol

Cu

Cl

l∞

h

ru

rl

X Y

Z
O

Fig. 3. A truncated cone on the reference plane in space.
(iv) Compute the height of the truncated cone h. The

height of the truncated cone is the distance between

the two centers, which can be computed by the

method proposed in Section 4.1.

(v) Compute the upper and lower radius ru and rl. The

radius refers to the corresponding Euclidean dis-

tance between the center and any point on the conic

(which corresponds to a circle in space). A more

faithful result can be obtained by using more points

on the conic.

(vi) Compute the volume V, lateral area Sl and whole

area Sw. After retrieve the height h, upper radius ru

and lower radius rl, it is very easy to compute the

volume and surface area of the truncated cone by the

following formulas:

V Z
p

3
hðr2

u Crurl Cr2
l Þ

Sl Z pðru CrlÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2 C ðrl KruÞ

2

q
Sw Z Ss Cpðr2

u Cr2
l Þ:
4.5. Retrieval of other geometrical entities

In this section, we will present an approach to measure

the distance from a point to a line in space. While other

geometrical entities, such as distance between two lines or

two parallel planes, distance from a point to a plane, angle

formed by two lines or two planes and that formed by a

line and a plane, may also be recovered in a similar way.

Suppose p1 and p2 are two planes in the scene, given a

point x2p1 and a line L2p2, with m and l the

corresponding images.

(i) Compute the coordinates of point xZ ½x; y; z�T from

m by the method stated in Section 4.3.

(ii) Compute the direction vector of line L. First, retrieve

the coordinates of plane p2 by Proposition 3, let P2

Z½nT
2 ; d2�

T with n2 the normal vector of p2; then

retrieve the back-projected plane pb of l, let PbZ
½nT

b ; db�
T with nb the normal vector of the back-

projected plane; so the direction vector of line L is

nLZn2 !nb.

(iii) Compute the distance from x to L. Randomly select

a point x0 on L, i.e.

nT
2 ; d2

nT
b ; db

" #
x0

1

" #
Z 0;

then the distance can be computed as

dðx;LÞ Z
jjðx Kx0Þ!nLjj

jjnLjj
:
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Fig. 4. Test result of height measurement under simplified camera model.
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5. Experiments with simulated data

During the simulations, the camera’s setup is:

fuZ1200, fvZ1000, sZ0, u0Z512, v0Z384. The image

resolution is 1024!768 pixels. The camera extrinsic

parameters are: rotation axis rZ[2,1,4]T, rotation angle

aZp/7 and translation tZ[10,5,250]T. We randomly

select 10 points in the horizontal reference plane to

compute homography and evenly select 100 points on a

pair of vertical parallel lines L1, L2. The Gaussian image

noise (with mean zero) is added on each image point, and

the corresponding image lines l1, l2 are fitted via least-

squares, then the vertical vanishing point can be computed

as ~vzZ l1 !l2. In order to provide more statistically

meaningful results, we vary the noise level from 0 to 4

with a step of 0.1 during the test, and take 200

independent tests at each noise level.
5.1. Height measurement

We first randomly select a vertical reference length on

the reference plane, retrieve the projection matrix according

to the method for the simplified camera model, and then

randomly select some objects on the reference plane and

compute their height by the method stated in Section 4.1.

The test results are shown in Fig. 4, where the left figure

shows the mean of relative error of the estimated height at

different noise level, while the right one is the corresponding
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standard deviations. From the results we can learn that

the proposed approach is of high accuracy when the skew

is zero.

5.2. The influence of skew factor

According to the camera setup in the test, fuZ1200, if the

angle formed by the image axes changes from 89.5 to 90.58,

the skew factor s will change from K10.47 to 10.47

accordingly, so it is necessary to analyze its influence to the

measurement. First, we vary the skew factor from K5 to 5

in a step of 0.2 without added noise in the image, then take

the height measurement by the method for the simplified

camera model, the results are shown in the left of Fig. 5, the

value at each step is the mean of 200 independent tests.

Next, we add 2 pixels noise in the image and do the same

test again, the results are shown in the right of Fig. 5. We

can conclude from these results that the variation of skew

factor has a significant influence to the accuracy of

measurement, and such an influence is far more pronounced

than that of noise. Therefore, we should not use the

simplified camera model to take measurement when the

skew factor is not close to zero.

5.3. Measurement on vertical plane

Here, the skew factor is set to sZ10, and a reference

length in the vertical plane is given so as to retrieve
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Fig. 6. Comparative test result of distance measurement on vertical plane under general camera model.
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the projection matrix by the method in Section 3.2.

Then randomly select some points on the vertical plane,

compute their coordinates via the method in Section 4.2, and

finally the distance between any two points. Fig. 6 shows the

relative error and standard deviations of the estimated

distances (in real lines with asterisk markers). We also carry

out a comparative study with the method proposed by

Criminisi [3]. It should be noted that the measurements in

[3] are some affine entities, so less assumption is needed.

However, the same assumption as proposed in this paper

should be made if we want to rectify the affine

measurements into the Euclidean ones. The test results are

shown in Fig. 6 (in dashed lines with circular markers). We

can see from the results that the accuracy of the two methods

is comparative, while the proposed method performs a little

bit better in the test.
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Fig. 7. Three images of indoor
6. Experiments with real images

In real image test, images are taken by a Nikon Coolpix

990 digital camera with resolution of 1024!768. Fig. 7

shows three images taken in our lab with the world coordinate

system chosen on the ground. During the test, we take the

ground floor as the reference plane and use the information of

the floor tiles to compute homography with the ground truth

that the side length of each tile is 61 mm (where, we select

eight control points on the floor of Fig. 7(a) and 12 points

on Fig. 7(b) and (c)). We use Canny edge detector to

detect the vertical straight-line segments and use the

detected lines to compute the vertical vanishing point via

maximum likelihood estimator [8]. The vertical reference

length is selected as R1Z121.6 cm, R2Z234.2 cm,

R3Z171.5 cm, as shown in Fig. 7. The test results are
X

Z

S5

S6 S7

R2

V1 Y

)

8 S10

S9

V2

scene used in the tests.



Table 1

Comparative test results of real images

Line segments S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

True distance (cm) 212.7 219.8 89.8 334.2 234.2 380.0 212.8 389.2 302.7 170.4

Proposed

method

Estimated

value

213.20 219.83 89.07 333.96 235.41 381.78 214.14 388.46 301.25 169.33

Relative

error (%)

0.24 0.01 0.81 0.07 0.52 0.47 0.54 0.19 0.48 0.63

Criminisi’s

method

Estimated

value

213.26 220.20 89.22 333.96 235.68 382.43 213.76 388.46 304.72 169.41

Relative

error (%)

0.26 0.18 0.65 0.07 0.63 0.64 0.45 0.19 0.67 0.58
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given in Table 1, where, the true value is taken manually on

the spot. Note that the distances of S8 and S9 are really

difficult to take manually in practice. A comparative results

with Criminisi’s method [3] are also shown in Table 1. The

two methods are of similar accuracy.

During the tests, a general camera model is employed to

compute the projection matrix. After recovering the

projection matrixes, the camera intrinsic and extrinsic

parameters corresponding to each image are decomposed.

Here, we just give the parameters of Fig. 7(a) and (b), from

which we can see that the results are largely consistent with

the real situation.

For Fig. 7(a):

K1 Z

1209:0 K9:3 503:2

0 1215:8 438:8

0 0 1

2
64

3
75;

R1 Z

0:7457 0:6662 K0:0029

0:0875 K0:1023 K0:9909

K0:6605 0:7387 K0:1346

2
64

3
75;

T1 Z

K96:01

94:25

434:77

2
64

3
75; C1 Z

350:50

K247:55

151:63

2
64

3
75:

For Fig. 7(b):

K2 Z

1210:8 0:2 541:3

0 1228:4 383:8

0 0 1

2
64

3
75;

R2 Z

0:9552 0:2952 K0:0215

0:0036 K0:0843 K0:9964

K0:2960 0:9517 K0:0816

2
64

3
75;

T2 Z

K16:69

119:79

416:67

2
64

3
75; C2 Z

138:84

K381:51

153:01

2
64

3
75

We also compute the volume of the cuboid shape

dustbin in Fig. 7(b) and the cylindrical one in Fig. 7(c),
and the estimated value are V1Z110,018.9 cm3,

V2Z26,628.2 cm3 with 0.69 and 0.74% relative error to

the ground truth (taken manually on the spot) of 109,265.0

and 26,826.7 cm3, respectively. The results are satisfactory.
7. Conclusions

In this paper, we mainly focus on geometrical

information recovery from a single uncalibrated image

and propose some novel approaches. Simulations and real

image tests, as well as the comparison with the method in

[3], validate the proposed methods and show that the

proposed approaches are of high accuracy and strong

robustness. In some structured environment, the geometrical

constraints about the scene are not rare, such as the outline

of a building, the frame of a window, a door, floor board,

etc. the applicability of the proposed approaches seems not

too limited.

It is clear that all the proposed approaches are based on

some known specific geometrical information about the

scene, and the precision of the measurement depends

greatly on that of the image pretreatment, such as edge

detection, line fitting and vanishing point determination.

Hence, it is crucial to select a robust edge detection and line

fitting technique so as to better the accuracy of measurement

[15,16]. We should note that lens distortion has not been

considered in our methods, since for the camera used in our

experiments, the lens distortion is negligible. However, the

image should be rectified firstly if the lens distortion does

play a significant role to the accuracy of measurement.
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