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Abstract. Classifier combining rules are designed for the fusion of the results 
from the component classifiers in a multiple classifier system. In this paper, we 
firstly propose a theoretical explanation of one important classifier combining 
rule, the sum rule, adopting the Bayes viewpoint under some independence 
assumptions. Our explanation is more general than what did in the existed 
previous by Kittler et al. [1]. Then, we present a new combining rule, named 
SumPro rule, which combines the sum rule with the product rule in a weighted 
average way. The weights for combining the two rules are tuned according to 
the development data using a genetic algorithm. The experimental evaluation 
and comparison among some combining rules are reported, which are done on a 
biometric authentication set. The results show that the SumPro rule takes a 
distinct advantage over both the sum rule and the product rule. Moreover, this 
new rule gradually outperforms the other popular trained combining rules when 
the classifier number increases. 

Keywords: Pattern Classification, Multiple Classifier System, Combining 
Rules. 

1   Introduction 

Combining multiple classifiers is a learning method where a collection of a finite 
number of classifiers is trained for the same classification task. Over the past years, 
this method has been considered as a more practical and effective solution for many 
recognition problems than using one individual classifier [1] [2]. 

An important issue in combining classifiers is that of the combining rules which 
are designed to fuse the results from the component classifiers. Generally, the 
combining rules are usually categorized into two categories: fixed rules and trained 
rules. The fixed rules combine the classification results in some fixed mode 
independent of the application tasks, notably the sum rule and the product rule [1]. 
And the trained rules combine the results in a trained way, such as weighted sum rule 
[3], Behavior-Knowledge Space algorithm [4], Decision Template method [5] and 
Dempster-Shafer (DS) [2] [6] method. Some related experimental studies contribute 
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to the comparison between these two kinds of methods [7] [8]. Given their extensive 
experimental results, it is still difficult to draw a consistent conclusion about which 
kind or which particular rule performs better than the others. The difficulty mainly 
lies on the lack of explicit theoretical analysis of these rules. Therefore, some 
theoretical studies on these rules appear with the objective to explain why some 
combination methods work better and in what cases they perform better than the 
others. One important work of Kittler et al. [1] develops a common theoretical 
framework based on the different feature sets, where many fixed combining rules 
such as the product rule, sum rule, min rule, max rule and vote rule are derived. They 
report that the sum rule outperforms the other rules because of its resilience to 
estimation errors. 

Although it is known that the fixed rules are obtained under strong assumptions, 
these assumptions still remain unclear. Furthermore, the sum rule takes favorable 
position in many experimental results, while the assumption for getting this rule is 
reported much stronger than the product rule [1]. In this paper, we focus on the 
combining rules based on the different feature sets. Our objective is to give a new 
explanation to the sum rule. Moreover, we present a new hybrid rule called SumPro 
which combine the sum rule with the product rule in a weighted average way. 

The remainder of this paper is organized as follows. Section 2 presents our 
theoretical framework on the combining rules through the Bayes theorem under 
independence assumptions. In particular, we give the detailed analysis on the sum rule 
and demonstrate that our explanation for the sum rule is more general than that in 
Kittler et al. [1] (fully described in the Appendix A). Then, we propose a new 
combining rule, named as SumPro rule. In Section 3, the experimental study on one 
data set is given to compare some combining rules for evaluating the SumPro rule. 
The conclusions are drawn in Section 4. 

2   Our Theoretical Framework 

In statistical pattern recognition, a given pattern x  is assigned to the i th class iw  

among all the m classes 1{ ,..., }mW w w=  with the maximum posterior probability. In a 

multiple classifier system, when the pattern x  is represented by multiple feature sets, 
i.e., 1 2( , ,..., )Rx x x x= , the pattern belonging to class iw  should satisfy the following 

equation: 

1 2arg max ( | , ,..., )k k Ri p w x x x=                         (1) 

2.1   Product Rule 

According to the Bayes theorem, the posteriori probability can be rewritten as 

1
1

1

( ,..., | ) ( )
( | ,..., )

( ,..., )
R k k

k R
R

p x x w P w
p w x x

p x x
=                     (2) 

where, 1( ,..., )Rp x x is the joint probability density. 

Assume that the feature sets are statistically independent given the class kw , i.e., 
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R

R k l kl
p x x w p x w

=
= ∏                        (3) 

Then the posteriori probability can be rewritten as 
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In terms of the posteriori probabilities yielded by the individual classifiers, we 
obtain the decision rule 

( 1) 1
1 1

1

( )
( | ,..., ) ( ) ( | )

( ,..., )

R

R lR l
k R k k ll

R

p x
p w x x p w p w x

p x x
− − =

=
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Excluding the same factor of 1

1

( )

( ,..., )

R

ll

R

p x

p x x
=∏

 for all the classes, we obtain the product 

rule 

( 1)

1
arg max ( ) ( | )

RR
k k k ll

i p w p w x− −
=

= ∏                    (6) 

2.2   Sum Rule  

In this section, we give the sum rule in two steps. First, we consider the case in which 
the system consists of two classifiers for combining ( 2R = ). 

Note that the posteriori probability 1 2( | , )kp w x x can also be computed by the 

probability of 1 2( | , )kp w x x as follows 

  1 2 1 2( | , ) 1 ( | , ),    { }k k k kp w x x p w x x w W w= − = −                (7) 

Assume that the feature sets are statistically independent given the class set kw , 

i.e., 

      1 1
( ,..., | ) ( | )

R

R k l kl
p x x w p x w

=
= ∏                      (8) 

With the analogous operation for getting formula (5), we get 
1

1 2 1 2 2( | , ) 1 ( ) ( | ) ( | )k k k kp w x x p w p w x p w x λ−= − ⋅            (9) 

Where 1 2
2

1 2

( ) ( )

( , )

p x p x

p x x
λ = .  

Since the sum of ( | )k jp w x  and ( | )k jp w x  equals one, formula (9) becomes 

1 2 2 1 2( | , ) [1 ( )] [1 ( )] [1 ( | )][1 ( | )]k k k k kp w x x p w p w p w x p w xλ⋅ = − −－ － －     (10) 

Applying formula (5), we expand the left of the above formula 

1 2 2 1 2

2 1 2

( | , ) ( | ) ( | )

1 ( ) [1 ( | )][1 ( | )]
k k k

k k k

p w x x p w x p w x

p w p w x p w x

λ
λ= − − −
－

－

               (11) 

With the further simplification, we get 
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1 2 2 2 1 2( | , ) [1 ( ) [ ( | ) ( | )]k k k kp w x x p w p w x p w xλ λ= −－ ]＋ ＋           (12) 

The above formula shows that the combining posterior probability can be 
expressed as the sum of the individual probabilities in the two-classifier case. And the 
assumptions (3) and (8) are used in the deducing process. 

Secondly, let us consider the case that the system consists of more than two 
classifiers ( 2R > ). 

We can regard the ensemble of former 1R −  component classifiers as one 
classifier. Then, according to formula (12), we get  

1 1 1( | ,..., ) [1 ( ) [ ( | ,..., ) ( | )]k R k R R k R k Rp w x x p w p w x x p w xλ λ −= −－ ]＋ ＋       (13) 

Where, 1 1

1

( ,..., ) ( )

( ,..., )
R R

R
R

p x x p x

p x x
λ −= . 

By expanding the above formula, we get the following expression  

1 1
2 2

( | ,..., ) [( ) ( | )] ( | ) .
q R q RR

k R q k l q k
l q l q

p w x x p w x p w x contλ λ
= =

= = =

= ⋅ + ⋅ +∑ ∏ ∏       (14) 

Where, 1 1

1

( ,..., ) ( )

( ,..., )
q q

q
q

p x x p x

p x x
λ −= , and  .cont  is the remaining terms which is only 

related to the class prior probability ( )kp w .  

Formula (14) demonstrates that the classifiers using independent feature sets 
should be combined in a linear weighted way under the two assumptions (3) and (8). 
Since our objective is to get the sum rule, we would cut off the weights. 

We assume that the feature measurements ( 1,2,..., )jx j R=  are statistically 

independent, then the value of ( 1,2,..., )j j Rλ =  equals one, i.e., 

=1 ( 1,2,..., )j j Rλ =                             (15) 

Under this assumption, the sum rule for multiple classifiers can be conclude from 
formula (14) that 

1

arg max { ( 1) ( ) ( | )}
R

k k k l
l

i m p w p w x
=

= − − +∑                  (16) 

This formula implies that the prediction decision can be drawn according to the sum 
of the posterior probabilities yielded by the individual classifiers. This is the same 
sum rule that has been widely used in the multiple classifier system field.  Compared 
to the product rule, two more independent assumptions, (8) and (15), are involved in 
the sum rule. To further understand these assumptions, some comments about these 
two rules are described as follows. 

 The assumptions (3) and (8) are two conditional dependent assumptions and they 
are popularly used in pattern recognition literature (e.g., Naïve Bayes classifier) 
for simplifying the analysis. The difference between these two assumptions lies 
in their different conditions, i.e., one has the given class kw while the other has 

the given class set kw . Note that, in two-class case, when the class set kw  
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merely consists of one class, these two assumptions are equivalent. It is also 
interesting to point out that this special case is a good explanation to one 
conclusion drawn in the previous work of Tax et al. [9], which states that, in a 
two-class problem, the sum rule and the product rule achieve comparable 
performance [9]. 

 Another assumption (15) involved in the sum rule is so strong that it would be 
violated in many applications. However, this independent assumption is actually 
a sufficient condition for the sum rule in our explanation. As shown in (12), in 
two-classifier case, this assumption is needless for the sum rule under equal prior 
assumption. 

 Another important related work have been given by Kittler et al. [1], who also 
deduced the sum rule with a rather strong assumption. This assumption states 
that the posteriori probabilities computed by the respective classifiers will not 
deviate dramatically from the prior probabilities. It is not difficult to prove that 
our explanation is more general than theirs. A detailed proof can be found in the 
Appendix A. 

 We must concede that to satisfy all the assumptions at the same time is really 
difficult in many applications. Nevertheless, the sum rule performs so well in 
error sensitivity that it outperforms other fixed rules in many experimental 
results [1] [10]. 

 Other common fixed rules, such as the max rule, the min rule and the vote rule 
can be easily obtained using the above two basic rules [1]. These rules are 
discussed in detail in Kittler et al. [1]. 

2.3   SumPro Rule 

As mentioned above, the sum rule requires much stronger assumptions than the 
product rule but it takes lower error sensitivity than the product rule. In real problems 
(when approximated posteriors are used), it is interesting to look for a hybrid method 
of these two rules which could combine the strengths of the product and sum rules. In 
this section, we propose a new combining rule called the SumPro rule. 

Firstly, let’s consider the two-classifier case ( 2R = ). 
Under the assumption (3) and (15), we get 

1
1 2 1 2( | , ) ( ) ( | ) ( | )k k k kp w x x p w p w x p w x−=                    (17) 

Under the assumption (15), formula (12) can be simplified as 

1 2 1 2( | , ) ( ) ( | ) ( | )k k k kp w x x p w p w x p w x=－ ＋ ＋                 (18) 

Thus, we have 

1 2 1 2

1
1 2

( | , ) (1 ) [ ( ) ( | ) ( | )]

                      ( ) ( | ) ( | )
k k k k

k k k

p w x x p w p w x p w x

p w p w x p w x

ω
ω −

= − ⋅ − + +

+ ⋅
             (19) 

Where  (0 1)ω ω≤ ≤ , can be regard as a variable varying from zero to one. 

Note that the sum rule and product rule expressions become the special cases when 
0ω =  and 1ω =  respectively. In real applications, it is always possible to find a 

suitable value of ω  under some criterion. 
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As to multiple-classifier case, the posterior probability can be computed by using 
following formula iteratively 

1 1 1 1

1
1 1 1

( | ,..., ) (1 ) [ ( ) ( | ,..., ) ( | )]

                            ( ) ( | ,..., ) ( | )
k R R k k R k R

R k k R k R

p w x x p w p w x x p w x

p w p w x x p w x

ω
ω

− −
−

− −

= − ⋅ − + +

+ ⋅
       (20) 

Then, the SumPro rule can be defined as following 

1 1 1

1
1 1 1

arg max {(1 ) [ ( ) ( | ,..., ) ( | )]

                            ( ) ( | ,..., ) ( | )}
k R k k R k R

R k k R k R

i p w p w x x p w x

p w p w x x p w x

ω
ω
− −

−
− −

= − ⋅ − + +

+ ⋅
         (21) 

In real applications, one essential task is to find a way for training the values 
of  ( 1,..., 1)i i Rω = − . One simple way is an exhaustively search for the optimal values 

on the training set under some criterion. However, this is impracticable when the 
classifier’s number is large. Considering that the genetic algorithm is a good tool for 
optimization problems [11], we apply genetic algorithm to tune the values of 

 ( 1,..., 1)i i Rω = − according to some optimization criterion. 

3   Empirical Study 

In this section, we perform experimental study to compare the combining rules on a 
biometric authentication data set. A biometric authentication system is designed to 
verify the identity of a person based on biometric measures such as the person’s face, 
voice, iris or fingerprints [10]. Use of multiple biometric indicators, known as 
multimodal biometrics, has been shown to increase the authentication accuracy [12]. 
A number of combining rules have been applied to combine the results of the multiple 
biometric indicators, where the sum rule, the DS rule, and the support vector machine 
(SVM) rule are usually reported as the champions [1] [13] [14]. 

Our experimental data set1 is presented by Poh and Bengio [15] to encourage 
researchers to focus on the problem of biometric authentication score-level fusion. 
The scores are taken from the XM2VTS database, which contains video and speech 
data from 295 subjects. There exist two configurations called Lausanne Protocol I 
(LP1) and Protocol II (LP2) in the dataset with different partitioning approaches of 
the training and development sets. In both configurations, the test set is the same [15]. 
In our experiment, we pick the LP1 for our experimental study where eight different 
classifiers are available. 

Two kinds of errors occur in a biometric authentication system, i.e., false 
acceptance of the impostors and false rejection of the clients. Correspondingly, there 
are two measures commonly used for evaluating the system, i.e., false acceptance rate 
( FAR ) and false rejection rate ( FRR ). Generally, FAR  and FRR  are balanced by 
the threshold which is used for determining whether one person is an impostor or a 
client. Another evaluation criteria is defined as the mean value of FAR  and FRR , 
called Half Total Error Rate ( HTER ), i.e., ( ) / 2HTER FAR FRR= +  [15]. 

 

                                                           
1 It is available at http://www.idiap.ch/~norman/fusion/main.php?bodyfile=entry_page.html. 
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Table 1.  Comparison of performances using different combining rules 

Rules N=2 N=3 N=4 N=5 N=6 N=7 N=8 
Product 2.36 1.86 1.56 1.43 1.74 2.54 3.50 

Sum 2.09 1.39 1.08 0.91 0.83 0.78 0.75 
Max 2.51 2.02 1.76 1.52 1.36 1.23 1.13 
Min 3.04 2.83 2.74 2.64 2.51 2.41 2.35 

SumPro 2.03 1.28 0.82 0.74 0.62 0.58 0.31 
wighted sum 1.82 1.15 0.88 0.76 0.70 0.66 0.63 

DS 1.47 1.20 1.07 0.99 0.90 0.82 0.76 
SVM 1.44 0.90 0.74 0.68 0.64 0.60 0.52 

The development set is used to estimate both the threshold value for rejecting and the 
approximate optimal omega values ( 1,..., 1)i i Rω = −  for the SumPro rule by the 
genetic algorithm. In our experiment, the genetic operators, including selection, 
crossover, and mutation are all set to the default values in the GA tool in Matlab 7.0. 
And the optimization criterion is to obtain the best HTER  value in the development set. 

The best and the worst HTER  values over all the single classifiers are 1.53% and 
7.60%. We perform the combining methods by combining all the possible 
combinations of  ( 2,3,...,8)N N =  classifiers taken from the eight ones. The mean 
HTER  values of every aggregate of the N classifiers are shown in Table 1. Below we 
highlight some of our interesting findings from Table 1. 

First, we find that combining classifier can contribute to the overall performance of 
the authentication system since, in the eight-classifier case, results with most 
combining rules are better than the best result of the single classifiers. In general, 
good trained rules usually outperform the fixed rules. In our experiment, the weighted 
sum rule, the DS rule and the SVM rule obtain superior results to the fixed rules, such 
as the product rule, the max rule and the min rule. However, the sum rule, as a fixed 
rule, achieves comparable performance with the trained rules. 

Then, the SumPro rule is consistently preferable than both the sum rule and the 
product rule. This conclusion is encouraging because the sum rule has been reported 
as the best rule in many related studies. Moreover, this new rule gradually 
outperforms the other popular trained combining rules when the classifier number 
increases (when 6,7,8N = ). 

4   Conclusion  

In summary, the contribution of this paper is twofold. At first, we give a theoretical 
analysis on the two fixed rules of the product and the sum rule which are often seen as 
two basic rules in the fixed rules. The proposed assumptions can help us to better 
understand the fixed rules. Second, we present a new combining rule called SumPro 
rule which combines the product rule with the sum rule. Experimental results reveal 
this new rule performs particularly well when the number of the classifiers is large. 
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Appendix A 

In this appendix, we demonstrate that our explanation for the sum rule is more general 
than the explanation in Kittler et al. [1]. In Kittler et al. [1], they presented an 
explanation of sum rule under the assumption that the posteriori probabilities 
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computed by the respective classifiers will not deviate dramatically from the prior 
probabilities, i.e., 

                                              ( | ) ( )(1 )k j k kjp w x p w δ= + ,                                         (22) 

where kjδ satisfies 1kjδ << . First, let us prove the following theorem.  

Theorem 1. Under the assumption (3), the assumption (22) is a sufficient condition 
for the assumption (8) and the assumption (15). 

Proof.  (a) Firstly, we consider the assumption (15). 
Substituting (22) into (3) and applying the Bayes theory, we get 

   1
11 1

( ,..., | ) ( ) ( )
r rr

r j l jl l
ll l

p x x w p x p xδ
== =

= + ⋅∑∏ ∏                                                         (23) 

Because of the basic character of the probability, we have 
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j l
j
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=∑                                                       (24) 

Thus, 

                                             
1

( )(1 ) 1
m

j jl
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+ =∑                                                      (25) 
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1
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m

j
j

p w
=

=∑ , we can find  

                                                   
1

[ ( ) ] 0
m

j jl
j

p w δ
=

⋅ =∑                                                  (26) 

According to the law of the total probability, 

                                          1 1
1

( ,..., ) ( ) ( ,..., | )
m

r j r j
j

p x x p w p x x w
=

=∑                            (27) 

Substituting (23) into (27), we find 

     1
1 11 1

( ,..., ) ( ) { ( ) [ ( )]}
r rm r

r l j jl l
j ll l

p x x p x p w p xδ
= == =
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From formula (26), we have 

                                
1 1 1

{ ( ) [ ( )]} 0
rm r

j jl l
j l l

p w p xδ
= = =

⋅ ⋅ =∑ ∑ ∏                                       (29) 

Substituting (29) into (28), we obtain 

                                              1
1

( ,..., ) ( )
r

r l
l

p x x p x
=

= ∏                                             (30) 

Formula (30) exactly implies that each feature set ( 1,2,..., )jx j R=  is independent 

from each other, thus the assumption (15) can be satisfied.  
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(b) Then, we consider the assumption (8). 
As discussed in Section 2.1, from formula (5) and the assumption (15), we get 

                  1
1 2

1

( | , ,..., ) ( ) ( | )
r

k r k k j
j

p w x x x p w p w x−

=

= ∏                                          (31) 

Substituting (22) into the above formula, we obtain 
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Thus, 
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On the other hand, when there are two classifiers for combination 
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As to multiple classifiers, it is not difficult to get 
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From (32) and (35), we find 
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According to the Bayes theorem, the left item and the right item of (36) can be 
expanded as 
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From (36), (37) and (38), we get  
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Applying (30) to the above formula, we get 

1 2 1
( , ,..., | ) ( | )

R

n k l kl
p x x x w p x w

=
= ∏                    (40) 

The above expression is exactly the assumption (8). 



332 S. Li and C. Zong 

Therefore, we can conclude that the assumption (22) is a sufficient condition for 
the assumption (8) and (15). 

In our explanation, under the equal prior assumption, the sum rule can obtained by 
only using the assumption (3) when there exist two class labels and two classifiers 
(see formula (12) and the assumption (8) is the same as the assumption (3) in two-
class problem). In other words, the assumption (22) is unnecessary for getting the sum 
rule in this special case. 

Considering the Theorem 1 and the special case above, we can conclude that our 
explanation with the independence assumptions is more general than the explanation 
by Kittler et al. [1]. 


	Introduction
	Our Theoretical Framework
	Product Rule
	Sum Rule
	SumPro Rule

	Empirical Study
	Conclusion
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




