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Abstract. In this paper, we propose a unified scheme of subspace and distance
metric learning under the Bayesian framework for face recognition. According to
the local distribution of data, we divide the k-nearest neighbors of each sample
into the intra-person set and the inter-person set, and we aim to learn a distance
metric in the embedding subspace, which can make the distances between the
sample and its intra-person set smaller than the distances between it and its inter-
person set. To reach this goal, we define two variables, that is, the intra-person
distance and the inter-person distance, which are from two different probabilistic
distributions, and we model the goal with minimizing the overlap between two
distributions. Inspired by the Bayesian classification error estimation, we formu-
late it by minimizing the Bhattachyrra coefficient between two distributions. The
power of the proposed approach are demonstrated by a series of experiments on
the CMU-PIE face database and the extended YALE face database.

1 Introduction

Face recognition is a hot topic in the communities of computer vision and pattern recog-
nition due to its potential applications in biometrics, surveillance, human-computer in-
terface, and multimedia. A lot of methods have been proposed in the past decades [31].

Since Principal Component Analysis(PCA) achieved much success in EigenFace
[25], subspace learning methods have been widely used for facial feature representation.
The general goal of subspace learning is to find some transformation to project high-
dimensional data into a low-dimensional subspace. Defining different objective func-
tions will produce different subspaces. We will review some popular subspace methods
in Section 2. However, same as most pattern recognition problems, similarity measure-
ment or classification scheme is needed to further analyze the relationship of the data or
to predict their labels based on the extracted features for face recognition. The simple
Euclidean distance is often used to measure the similarities between two face images
in the subspace, but it is not a better metric in most cases. Distance metric learning is a
technique to learn a distance based similarity measurement and classification scheme,
and has attracted much attention in machine learning and computer vision in recent
years. Its original goal is to directly learn the distance metric from the available train-
ing data, in order to improve the performance of distance-based classifiers. Due to the
encouraging effectiveness of the simple nearest neighbor rule, most studies focused on
learning the similarity matrix of the Mahalanobis distance to improve the performance
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of the nearest neighbor classification. A common strategy is to minimize various sep-
aration criteria between the classes assuming equivalent relations over all the data or
the k-nearest neighbors. A brief review will be given in Section 2. However, for high
dimensional data, such as face image data (the dimension of an image with the size of
100× 100 is up to 104), learning the metric matrix directly in such a high dimensional
space, not only results in high computational cost, but also is sensitive to noise.

In this paper, we propose a unified scheme of subspace and distance metric learning
for face recognition under the Bayesian framework. In order to learn a local distance
metric with subspace dimensionality reduction, we divide the k-nearest neighbors of
each sample into the intra-person set and the inter-person set according to the local
distribution of the data, and we aim to make the distances between the sample and
its intra-person set smaller than the distances between it and its inter-person set in the
embedding subspace, so as to handle the high-dimensional data well. We define two
variables in the subspace, i.e., the intra-person distance and the inter-person distance,
and model them with two different probability distributions. Thus, the problem can be
converted to minimize the overlap between two distributions. Inspired by the Bayesian
classification error estimation, we formulate it by minimizing the Bhattachyrra coeffi-
cient measurement between two distributions, and the solution can be obtained by the
gradient descent optimization. The proposed work has some special characteristics: 1)
It is based on the local neighbors, so it does not make assumption on the global distribu-
tion of the data like Linear Discriminant Analysis (LDA). 2) It can be directly used for
multi-class problems without any modification or extension. 3) It links to Bayesian clas-
sification error and has an intuitionistic geometric property due to adoption of the Bhat-
tachyrra coefficient measurement. We conduct the experiments on two benchmarks, the
CMU-PIE face database [21] and the extended YALE face database [15], and the ex-
perimental results show the promising performance of the proposed work compared to
the state-of-the-arts.

2 Related Work

Subspace learning is a popular approach of face recognition. It maps the high dimen-
sional face image data into a low dimensional subspace based on some criteria. Eigen-
face [25]and Fisherface [5] [30]are two classic methods, which are based PCA and
LDA respectively. PCA seeks to maximize the covariance over the whole data, so it is
optimal for data reconstruction, but it is not optimal for classification. The idea of LDA
is to find a linear subspace projection that maximizes the between-class scatter and
minimizes the within-class scatter. However, LDA assumes that each class has a simi-
lar within-class distribution of samples. Kernel PCA (KPCA) and Kernel LDA (KDA)
combine the nonlinear kernel trick with PCA and LDA to get nonlinear principal com-
ponent and discriminant subspaces [19] [16]. However, for the kernel methods, the
kernel function design is still an open problem, and different kernels will give differ-
ent performances. Manifold based subspace methods, such as LLE [17] and ISOMAP
[23], aim to preserve the local geometric relations of the data in both the original high
dimensional space and the transformed low dimensional space, while they often have a
problem of ”out of sample”. Local Preserving Projection (LPP) gives a linear approx-
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imation of manifold structure to deal with this problem [13]. In [8], the idea of LDA
is integrated into LPP to enhance the discriminating performance of LPP. In [22], M.
Sugiyama proposed to compute the within-class scatter and between-class scatter in
LDA with a weighting scheme inspired by LPP. A generalized interpretation for these
methods based on graph analysis is discussed in [28]. From the view of subspace di-
mensionality reduction, our work is similar to LDA, which aims to find a transformation
of separating one class from the others, and it can be also extended with the kernel trick.
However, our work is different from LDA in that: no constraints are made on the global
distribution of the data, because it is based on the local neighbors’ distribution, and it
preserves the neighborhood relationship of the data during the dimension reduction as
in manifold learning.

Subspace learning can be thought as a method of feature representation, while dis-
tance metric learning is related to constructing a data classification scheme. It is well
known that the nearest neighbor rule is simple and surprisingly effective. However, its
performance crucially depends on the distance metric. For different distance metrics, it
will produce different nearest neighbor relationships. Most previous studies aim to im-
prove the performance of the nearest neighbor classification by learning a distance met-
ric based on the Mahalanobis distance from the labeled samples. E. Xing et al [27] tried
to find an optimal Mahalanobis metric from contextual constrains in combination with
a constrained K-means algorithm. B. Hilled et al [4] [20] proposed a much simpler ap-
proach called Relevance Component Analysis (RCA), which identities and downscales
global unwanted variability within data. However, it does not consider the between class
pair-wise information, which will influence its performance on classification [14]. K.
Q. Weinberger et al [26] proposed to learn the distance metric by penalizing large dis-
tances between each input and its neighbors and by penalizing small distances between
each input and all other inputs that do not share the same label. Its solution is based on
complex quadratic programming. Torresani and Lee [24] extended this method with
dimensional reduction, but its objective function is non-convex. Neighborhood Compo-
nent Analysis (NCA) aimed at directly maximizing a stochastic variant of the leave one
out K-NN score on the training set [12]. Later, A. Globerson et al [11] converted the
formula of NCA to a convex optimization problem with a strong assumption that all the
samples in the same class were mapped to a single point and infinitely far from points in
different classes. Actually, this assumption is unreasonable for practical data. In [29],
the bound optimization algorithm [18] was adopted to search a local distance metric
for the non-convex function. Most of the above methods do not consider the dimen-
sionality reduction for high dimensional data except for RCA [4] [20], NCA [12], and
[24]. However, the proposed method is different from them in that it links to Bayesian
classification error and has an intuitionistic geometric property due to adoption of the
Bhattachyrra coefficient measurement.

3 Our Work

In this section, we propose a new unified framework of subspace and distance met-
ric learning, which is inspired by the Bayesian classification error estimation. We first
present our purpose and then give a Bhattacharyya coefficient based solution.
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3.1 The Purpose

Let X = {x1, x2, · · · , xn} ∈ RD denote the training set of n labeled samples in C
classes. Let l(xi) be the label of sample xi, i.e.,l(xi) ∈ {1, 2, . . . , C}. Most distance
metric learning methods seek to directly find a similarity matrix Q based on the Ma-
halanobis distance to maximize the performance of the nearest neighbor classification.
The Mahalanobis distance between samples xi and xj is defined as follows:

Pi,j = (xi − xj)T Q(xi − xj). (1)

However, learning Q directly in a high dimensional space, such as the image space,
will be sensitive to noise to some extent, besides being computationally expensive.

Since Q is a D × D semi-definite matrix, it can be rewritten as: Q = AAT . If the
dimension of A is D×d, d < D, (1) is equivalent to calculating the Euclidean distance
in the transformed subspace with A.

Pi,j = ‖AT xi −AT xj‖2 = (xi − xj)T AAT (xi − xj). (2)

Thus, the distance metric Q for high dimensional data can be computed by an ex-
plicit embedding transformation A. In this paper, we will focus on how to first learn this
transformation A, and then compute Q. Actually the transformation A is corresponding
to subspace dimension reduction, so this idea is equivalent to integrating the subspace
and distance metric learning together.

Before presenting the details of our approach, we first give some definitions. The
set Nr(xi) is the k-nearest neighbors of sample . Same as in [26] [24], the neighbors
are computed by the Euclidean distance in the original data space. We divide Nr(xi)
into two sets using the labels of the samples, Nr(xi) = Si

⋃
Di, where the labels of

the set Si are same as the label of xi, xs ∈ Si, l(xs) = l(xi), and the samples in Di

have different labels from the sample xi, xd ∈ Di, l(xd) 6= l(xi),. We call them the
intra-person set and inter-person set respectively in this paper.

Intuitively, a good distance metric should make each sample close to the samples
in the same class and far from the samples in the different classes. Based on the near-
est neighbor classification scheme, we can compare each sample against its k-nearest
neighbors. We aim to find a distance metric that makes each sample far from the sam-
ples in its inter-person set and close to the samples in its intra-person set. Thus, our goal
can be described as follows:

Given any samples xi and its two kinds of neighbors xs ∈ Si and xd ∈ Di, the
intra-person distance Pis(A) between xi and xs should be smaller than the inter-person
distance Pid(A) between xi and xd:

Pis(A) = ‖AT (xi − xs)‖2, xs ∈ Si, (3)

Pid(A) = ‖AT (xi − xd)‖2, xd ∈ Di, (4)

Pis(A) < Pid(A), for∀i, s, d. (5)
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3.2 Bhattacharyya Coefficient based Solution

For convenience, we define the variable Ps(A) to represent all the intra-person dis-
tances, Ps(A) = {Pis(A)} for all the i and s, and the variable Pd(A) to represent
all the inter-person distances, Pd(A) = {Pid(A)} for all the i and d. Assuming that
Ps(A) and Pd(A) are from two distributions respectively, Ps(A) ∼ ρs(P (A)) and
Pd(A) ∼ ρd(P (A)), we can achieve our goal to find a transformation A that minimizes
the overlap between these two distributions. Figure 1 gives an illustration, where x rep-
resents the distance P (A). It can be found that minimizing the overlap means to sep-
arate the intra-person distances Ps(A) from the inter-person distances Pd(A) as much
as possible, and it is also equivalent to minimizing the up-boundary of the classification
error as much as possible under the Bayesian framework.

Fig. 1. An illustration of minimizing the overlap

The Bhattacharyya coefficient is a divergence-type measure which has an has an
intuitionistic geometric interpretation [9]. Moreover, it is a popular technique to es-
timate the boundary of the classification error, i.e., the overlap between two distribu-
tions [10]. Given two distributions, ρ1(x) and ρ2(x), their Bhattacharyya coefficient is∫ √

ρ1(x)ρ2(x)dx. A small Bhattacharyya coefficient means a small overlap between
two distributions which may lead to a small classification error. Thus, we define the
objective function with Bhattacharyya coefficient between ρs(P (A)) and ρd(P (A)) as
follows:

JB(A) = max
A

(− ln
∫ √

ρs(P (A))ρd(P (A))dP (A)). (6)

In this paper, we regard the variables of the intra-person distance and inter-person
distance as two different Gaussian distributions. We define the mean and variance of
all the Ps(A) distances as µs(A) and Σs(A), and the mean and covariance of all the
Pd(A) vectors as µd(A) and Σd(A) i.e.,

ρs(P (A)) = N(µs(A), Σs(A)), (7)

ρd(P (A)) = N(µd(A), Σd(A)), (8)
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where N(µ,Σ) represents a Gaussian distribution with mean µ and covariance Σ. Now
the objection function (6) can be written as [10]:

JB(A) = max
A

{
1
4

(µs(A)− µd(A))2

Σs(A) + Σd(A)
+

1
2

ln
Σs(A) + Σd(A)
2
√

Σs(A)Σd(A)

}
(9)

Denote E(·) represents the expectation operation, and Tr(X) is the trace of the
matrix X . Since any ‖AT xij‖2 = Tr(AT xijx

T
ijA), where xij = xi − xj , we have

µs(A) = E(Ps(A)) = E(Tr(AT xisx
T
isA)) = Tr(AT E(xisx

T
is)A) = Tr(AT MsA)

(10)

µd(A) = E(Pd(A)) = E(Tr(AT xidx
T
idA)) = Tr(AT E(xidx

T
id)A) = Tr(AT MdA)

(11)

Σs(A) = E(Ps(A)− µs(A))2 = E(Ps(A))2 − µ2
s(A) (12)

Σd(A) = E(Pd(A)− µd(A))2 = E(Pd(A))2 − µ2
d(A) (13)

The solution of (9) can be obtained by the gradient descent algorithm, such as the
conjugate gradient method. For simplicity, we ignore (A) in all the JB(A), µs(A),
Σs(A), µd(A), and Σd(A). The differentiation of JB with respect to A is as follows:

∂JB

∂A
=

(µs − µd)(∂µs

∂A − ∂µd

∂A ) + (∂Σs

∂A + ∂Σd

∂A )
2(Σs + Σd)

−
(µs − µd)2(∂Σs

∂A + ∂Σd

∂A )
4(Σs + Σd)2

−
∂Σs

∂A

2Σs
−

∂Σd

∂A

2Σd

(14)
where

∂µs

∂A
= 2MsA (15)

∂µd

∂A
= 2MdA (16)

∂Σs

∂A
= 4E(Tr(AT xisx

T
isA)xisx

T
isA)− 4Tr(AT MsA)MsA (17)

∂Σd

∂A
= 4E(Tr(AT xidx

T
idA)xidx

T
idA)− 4Tr(AT MdA)MdA (18)

From the above description, we can see that the proposed method tries to find the
embedding subspace during learning the distance metric inspired by the Bayesian clas-
sification error estimation. The transformation A does not change the k-nearest neigh-
borhood relationship of the data, which is similar to the local preserving property of
manifold learning, but it is different from popular manifold learning methods in that it
aims to make each sample far from its inter-person set and close to its intra-person set.
Although we use the Gaussian distribution to model the the variables of the intra-person
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distances and inter-person distances in the subspace, they are based on the local neigh-
bors, so we do not make assumption on the global distribution of the data compared
to LDA. Compared with most distance metric learning methods, the proposed method
uses the Bhattacharyya coefficient measurement, which has intuitionistic geometric in-
terpretation and links to Bayesian classification error under the Bayesian framework.
The proposed method can handle high dimensional data well.

4 Experiments

We test the proposed method on the two benchmarks, i.e., the CMU-PIE face database
[21] and the extended YALE face database [15]. The data of the two face databases
are available in [1]. In our experiments, we take the PCA as the baseline, where we
keep 98% energy of eigenvalues. We compare the proposed method with related works,
i.e., LDA, RCA, and NCA. The codes of RCA and NCA are downloaded from [2] and
[3] respectively. For RCA, we use the prior label information to form the chunklets. In
addition, we also compare the proposed method with the Bayesian face subspace (BFS)
[6]. In the Bayesian face subspace, the face images are modeled by the intra-face and the
inter-face subspaces, which are represented by PCA directly in the input data space. For
the Bayesian face subspace, we construct the principal subspace with the 90% energy
of the eigenvalues, and the complemental subspace with the rest of 10% energy. In the
experiments, we set the number of neighbors k as the training numbers of each class
minus 1.

4.1 CMU-PIE Face Database

The CMU PIE face database contains 68 subjects and 41368 images [25]. Each sub-
ject has 13 different poses, 43 different illuminations, and 4 different expressions. In
this paper, our dataset is composed of all the images from five near frontal poses
(C05, C07, C09, C27, C29) including all the illumination and expression variations
as in [7] [1]. There are 170 face images for each subject in our dataset. The images
are cropped by fixing two eyes, and the cropped image size is 32 × 32. No image pre-
processing is performed except normalizing the image into unit vector as in [7] [1].
Figure 2 shows some samples of one subject.

We randomly select 30 images from each subject for training, and the other 140
images of each subject for testing. The experiments are randomly run 50 times, and all
the results reported in Figure 3 are the average of 50 times experiments. Because there
are 68 classes, the maximum feature dimension of LDA is 68-1 = 67. From Figure 3,
we can see that MBC is better than PCA, LDA, RCA, NCA, and BFC. The minimum
classification error of MBC is 5.46%, while those of PCA, LDA, RCA, NCA, and BSF
are 29.4%, 7.84%, 14.62%, 6.76%, and 6.76% respectively. The performance of MBC
is still better than the modified LPP [7]. In [7] [1] , the modified LPP obtained the
minimum average classification error of 7.5% over 50 times experiments under the
same testing protocol, i.e., 30 images are randomly selected from each subject, and the
rest images of each subject are used for testing.
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Fig. 2. Samples of the CMU-PIE database

Fig. 3. Testing error rate on the CMU-PIE database

4.2 Extended YALE Face Database

The extended YALE face database has 38 subjects, each subjects has 64 near frontal
view images under different illuminations [1] [15]. The images are cropped to 32 ×
32, and images are normalized into unit vectors as in [7] [1]. Figure 4 shows some
image samples. Same as the experiments on the CMU-PIE database, we randomly select
30 images from each individual for training, and the rest 34 images per subject are
used for testing. The experiments are run 50 times, and Figure 5 reports their average
results. Because the training data has 38 classes, the maximum feature dimensions of
LDA is 38-1 = 37. The minimum classification error of MBC is 2.5%, while those of
PCA, LDA, RCA, NCA, and BSF are 25.59%, 13.34%, 10.88%, 4.93%, and 3.93%
respectively. The performance of MBC is still better than the modified LPP [7], for
the minimum classification error of the latter reported is 7.5% under a similar testing
in [7] [1].
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Fig. 4. Samples of the extended YALE database

Fig. 5. Results on the extended YALE database

5 Conclusions

In this paper, we presented a unified scheme of subspace and distance metric learning
under the Bayesian framework for face recognition. We divided the k-nearest neigh-
bors of each sample into the intra-person set and the inter-person set according to the
local distribution of the data, and we attempted to learn a distance metric in the embed-
ding subspace, which made the distances between the sample and its intra-person set
smaller than the distances between it and its inter-person set in the embedding subspace.
To reach this goal, we defined two variables in the subspace, i.e., the intra-person dis-
tance and the inter-person distance, and modeled them with two different probabilistic
distributions. Then we converted our problem to that of minimizing the overlap be-
tween these two distributions. Inspired by Bayesian classification error estimation, Our
goal was equivalent to minimizing their Bhattachyrra coefficient measurement. The pro-
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posed framework made no assumption on the global distribution of the data. Moreover,
it links to Bayesian error. We proved the power of the proposed approach on the CMU-
PIE face database and the extended YALE face database.
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