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Abstract. In this paper, we systematically study the effect of poorly
registered faces on the training and inferring stages of traditional face
recognition algorithms. We then propose a novel multiple-instance based
subspace learning scheme for face recognition. In this approach, we iter-
atively update the subspace training instances according to diverse den-
sities, using class-balanced supervised clustering. We test our multiple
instance subspace learning algorithm with Fisherface for the application
of face recognition. Experimental results show that the proposed learn-
ing algorithm can improve the robustness of current methods with poorly
aligned training and testing data.

1 Introduction

Face recognition has been one of the most successful applications of image anal-
ysis due to its wide range of potential commercial, security and entertainment
applications. Depending on the type of features used, face recognition algorithms
can be classified into two categories: shape based approaches, such as elastic
bunch graph matching [I], and appearance based approaches, such as eigen-
faces [2I3] and Fisher-faces [45] etc.

Accurate face alignment is critical to the performance of both appearance-
based and shape-based approaches. However, current feature extraction tech-
niques are still not reliable or accurate enough. It is unrealistic to expect
localization algorithms to always get very accurate results under very differ-
ent lighting, pose and expression conditions. To get better recognition rate, we
need to improve the robustness of existing recognition algorithms.

To illustrate the effect of the face alignment error on face recognition per-
formance, we use the FERET face database [6] with ground truth alignment
information available. We intentionally add some perturbations to the ground
truth. Perturbations are added by moving the left center and right eye center
ground truth with some random pixels.

Figure [l shows that the rotation perturbation affects the recognition perfor-
mance most, and the translation perturbation has the smallest effects. Over-
all, we can see that even small perturbations could reduce the recognition rate
significantly.
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Fig. 1. Recognition Rate Change for FisherFace w.r.t (a) Rotation, (b) Scale and (c)
Translation Perturbations

One intuitive way to make classifiers robust to image alignment errors is
to augment the training sets by adding random perturbations to the training
images. By adding noisy but identifiable versions of given examples, we can
expand our training data and improve the robustness of the feature extraction
against a small amount of noise in the input. The augmented training set can
model the small image alignment errors. The other way is to add perturbations to
the probe images during the testing stage. Adding perturbations to the training
set requires that we know the ground truth before hand.

In multiple-instance learning algorithms, the task is to learn a classifier given
positive and negative bags of instances. Each bag may contain many instances.
A bag is labeled positive if at least one of the instance in it is positive. A bag
is labeled negative only if all instances in it are negative. The face alignment
problem can be explicitly formulated as a multiple-instance learning problem:
we take the whole image as a bag, and all possible sub-windows within it as
instances. If an image contains a face, then we label this image as a positive bag,
since we know that there is at least a sub-window containing the face, but we
don’t know where exactly that sub-window is.

In this paper, we systematically investigate the effect of mis-aligned face im-
ages on face recognition systems. To make classifiers robust to the unavoid-
able face registration error, we formulate the face alignment problem within the
multiple-instance learning framework. We then propose a novel multiple-instance
based subspace learning scheme for face recognition tasks. In this algorithm,
noisy training image bags are modeled as the mixture of Gaussians, and we
introduce a supervised clustering method to iteratively select better subspace
learning samples. Compared with previous methods, our algorithm does not re-
quire accurately aligned training and testing images, and can achieve the same or
better performance as manually aligned face recognition systems. In this paper,
we used the term "noisy tmages” to denote poorly aligned images.

1.1 Related Work

Researchers have been trying to overcome the sensitivity of subspace based
face recognition algorithms to image alignment errors. Martinez [7] proposed
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a method to learn the subspace that represents the error for each of training im-
ages. Shan et al. [§] studied the effect of the mis-alignment problem, and for each
training image they generated several perturbed images to augment the training
set and thus modeling the mis-alignment errors. Compared with the aforemen-
tioned work, our algorithm requires the ground truth for neither the training
set nor the testing set. Multiple-instance learning approach, on the other hand,
such as MILBoost, was used in [9] for face detection problems. In their work, Vi-
ola et al. formulated the face detection problem as a multiple-instance learning
approach, and AnyBoost was modified to adapt to multiple-instance learning
condition. Several multiple-instance learning methods have been proposed, such
as diverse density [10] and MI-SVMs [IT]. Diverse density algorithm tries to find
the area which is both of high density positive points and of low density neg-
ative points. kNN is adopted for multiple-instance learning by using Hausdorff
distance in the work of Wang et al. [12].

2 Multiple-Instance Subspace Learning

2.1 Motivation

Given a limited set of noisy training images, we augment the training set by
perturbing the training images. The augmented larger training set will normally
cover more variations for each subject and thus model the alignment error, how-
ever, it could also introduce some very poorly registered faces into the training
set, which will have negative effect for the learning process.

Fig. 2. Bags of Instances

Figure [ shows two noisy training images (1) and (2). From each of the
noisy image, we generate two bags each with multiple instances, denoted by
(a), (b),...(e) in the figure. While image (b) and (d) will certainly benefit the
training process, image (e) will most likely cause confusion for the classifier,
since it could be more similar to other subject. As will be shown later, those
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very poorly registered images will indeed increase the recognition error. Thus
given noisy training images, we must build algorithm that can automatically se-
lect those ”"good” perturbed images from training bags, and exclude those very
poorly registered images from being selected.

2.2 Approximating the Constrained k-Minimum Spanning Tree

Excluding very poorly registered images from the noisy bags can be formulated
within the multiple-instance learning framework. One assumption is that the
good perturbed images from the same subject tend to be near to each other.
The high density areas correspond to the good perturbed images, while the low
density areas correspond to poorly perturbed images, and those are the bad
images we want to exclude from the training set. As shown in figure 2] the good
perturbed images will lie in the intersection area of the two bags. The idea is very
similar to the diverse density approach used by Maron [I0] for multiple-instance
learning. Since the the perturbed noisy images have irregular distribution, we use
non-parametric method to find out the high density area. Our non-parametric
method is based on k-minimum spanning tree [13]: given an edge-weighted graph
G = (V, E), it consists of finding a tree in G with exactly k < |V|—1 edges, such
that the sum of the weight is minimal. In our face recognition application, the
nodes will be the face image instances, and the edges represent the Euclidean
distance between face image instances. The problem is known as NP-complete
problem, and we don’t need to get the exact solution. We used heuristic method
to find out the approximate k-minimum spanning tree. Firstly, for each instance,
we build its k-nearest neighbor graph. Among all the instances, we find the
one with minimum k-nearest neighbor graph. Since the size of the neighbors is
fixed by k, the one with minimum sum of k-nearest neighbor graph will have
the highest density, and thus corresponds to the good perturbed image area.
Although in this high density area, there will still exist some noisy images, those
noisy images are identifiable and useful to our learning algorithm.

We also need to add the constraint to include at least one instance from each
bag during the base selection phase. The idea is similar to that of MI-SVM. In
MI-SVM, for every positive bag, we initialize it with the average of the bag,
and compute the QP solution. With this solution, we compute the responses for
all the examples within each positive bag and take the instance with maximum
response as the selected training example in that bag. In our k-nearest neighbor
graph algorithm, if some bag is far from other bags, using only the k-nearest
neighbor graph to select training images may not include any instance from
this isolated bag. We force the algorithm to accept at least one instance from
every bag. If all the instances in a bag fall outside the most compact k-nearest
neighbor graph, we select the instance with the minimum distance to the k-
nearest neighbor graph.

The iterative multiple-instance based FisherFace [4] [B] learning procedure is
shown in the following algorithm [

The learning procedure normally takes 2-3 iterations to converge. In our ex-
periments, we use bag size of 25, i.e., each original training image is perturbed



Face Mis-alignment Analysis by Multiple-Instance Subspace

Algorithm 1. Multiple-Instance Subspace Learning Algorithm

Input:

S: number of subjects
Ns,s = 1...5: number of noisy image for subject s

R:
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Select good perturbed training samples G for each subject by finding the most

compact k-nearest neighbor graph from projected subspace y.

: end while

(1) (2)

Fig. 3. Bag Distances Map

to generate 25 images. Each subject has 1-4 training images, and we take k as
60% of each subject’s total number of perturbed noisy images.

To show that good perturbed images are similar to each other, figure Bl shows

an example distance map for two bags (1) and (2). Each bag has 25 instances,
which are generated by adding 25 random perturbations to a well-aligned image.
The instances around the middle of the two bags have smaller perturbations, i.e.,
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they are good perturbed images. In the distance map, the darker the color, the
similar the two instances. From the graph we can see that an instance from
bag (1) is not necessarily always nearer to instances in bag (1) than in bag (2),
which means that two aligned different face images from one subject could be
more similar than the same image to itself perturbed by noises. Also we can see
that instances around the middle of bag (1) are more similar to those instances
around the middle of bag (2), which means good perturbed images from the
same subject are similar to each other, and thus confirmed our assumption.

2.3 Testing Procedure

During testing stage, we used the nearest neighbor algorithm as our classifica-
tion algorithm. The distance metric we used is the modified Hausdorff distance.
The Hausdorff distance provides a distance measurement between subsets of a
metric space. By definition, two sets A and B are within Hausdorff distance
of d of each other iff every point of A is within distance of d of at least one
point of B, and every point of B is within distance d of at least one point of
A. Formally, given two sets of points A = {A4,..., A} and B = {By, ..., By},
the Hausdorfl distance is defined as: H(A, B) = max{h(A, B), (B, A)}, where
h(A,B) = maxa,caming, e ||A; — Bj|. This definition is very sensitive to out-
liers, so we used a modified version of the Hausdorff distance. In this paper, we
take the distance of bag A and bag B as H (A, B) = ming,e4 ming, ez || A; — B;]|.
For single instance probe and gallery testing case, we use the nearest neighbor
method based on Euclidian distance in the subspace.

3 Experimental Results and Discussions

We used the well known FERET database [6] in our experiments. One reason
to use this data set is that it’s relatively a large database available, and the
testing results will have more statistical significance. The training set, which is
used to find the optimal FisherFace subspace, consists of 1002 images of 429
subjects, with all subjects at near-frontal pose. The testing set consists of the
gallery set and the probe set. The gallery set has 1196 subjects, each subject has
one near-frontal image with under normal lighting condition. The probe set has
1195 subjects, each subject has one image with the same condition as the probe
set, but with different expressions. For comparison purposes, we have the ground
truth positions of the two eye centers for training, probe and gallery images.

In this paper, we denote notsy bag as a bag generated from a noisy image,
and aligned bag as a bag generated from a well-aligned image. We use ”single”
in comparison to bag.

Since we have many possible experimental setup combinations (training data,
gallery data, probe data, noisy image, well-aligned image, single image and bag
of images etc), we use table [l and table B to explain our experimental setup.
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3.1 Testing with Well-Aligned Training Data

To see how the introduction of the augmented training bags will affect the recog-
nition performance, we first test on the well-aligned training data.

Table 1. Testing combinations for aligned training

data Table 2. Results comparison
Base 1 single aligned training base 1 base 2
Base 2 aligned bag training testing 1 0.9247 0.9749
Testing 1 single aligned gallery, single aligned probe testing 2 0.8795 0.9665
Testing 2 single aligned gallery, single noisy probe testing 3 0.9674 0.9849
Testing 3 aligned bag gallery, noisy bag probe testing 4 0.9431 0.9774

Testing 4 single aligned gallery, noisy bag probe

From table [2] we have the following notable observations:

— The recognition rate is always higher if we use aligned bag instead of single
image as training data, which motivates the aforementioned perturbation
based robust algorithms. However, it’s not true anymore if we don’t have
well-aligned training data, i.e., we only have some noisy training images,
and we add perturbations to generate noisy bags. Using the noisy bags as
training data may not necessarily improve recognition performance, since
the very poorly aligned images will confuse the classifier.

— If we take the baseline algorithm as the case of single aligned training, single
aligned gallery and single aligned probe, then the rank-1 recognition rate for
the baseline algorithm is 92.47%.

— If we use aligned bag probe and noisy bag probe, the rank-1 recognition
rate is 96.74%, which is better than the baseline algorithm. It means adding
perturbations to the gallery and probe set can make the algorithm robust to
alignment errors.

3.2 Testing with Noisy Training Data

To show that if we don’t have well-aligned training data, adding random per-
turbations to augment the training set may help much, we performed various
experiments. More importantly, we also show that after selecting good perturbed
images using our multiple-instance based scheme from the set of augmented data,
the recognition performance improves a lot. Table ] shows the testing results,
and we have the following notable observations:

— When we use single noisy training image without adding perturbations (base
1), the recognition rate is very low for all the testing combinations. This
indicates that the within-subject scatterness for poorly registered face in the
training set is so high that they overlap with other subjects’ clusters and
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Table 3. Testing combination for noisy training

data Table 4. Results comparison
Base 1 single noisy training
Base 2 Iteration 1, noisy bag training testing 1|testing 2|testing 3
Base 3 Iteration 3, noisy bag training base 1| 0.3213 | 0.1941 | 0.5431
Testing 1|single aligned gallery, single aligned probe base 2| 0.9540 | 0.9364 | 0.9766
Testing 2| single aligned gallery, single noisy probe base 3| 0.9690 | 0.9590 | 0.9833
Testing 3| aligned bag gallery, noisy bag probe

S
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lead to confusion for the classifiers. For Fisherface, it means the objective
function it tries to minimize is ill-conditioned, which will lead to the failure
of the algorithm.

For base 2 case, we augment the noisy images by adding perturbations to
generate noisy bags, then the recognition rate increases greatly compared to
using noisy images directly.

Base 3 shows that it’s not good to treat all the instances from the noisy
bags as the same. We used our multiple-instance based subspace learning
method to remove those ”bad” instances from the augmented noisy bags.
The resulting training set increases the discriminative power of the classifier,
but not to disperse the within subject cluster and cause confusion.

Given only noisy training and probe set, we still achieved much higher recog-
nition rate of 98.33% than the baseline algorithm of 92.47% as shown in
table[2 and roughly the same as the optimal case of 98.49%, where all noisy
bags are generated by perturbing the aligned images.
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Figures ] shows testing results with single aligned image as training data.

Figure[Bl shows testing results with aligned bag as the training data. Both figures
show the change of recognition rate w.r.t. the change of the number of dimension
used by FisherFace. In both cases, the recognition rate has the following order:
testing 3 > testing 1 > testing 2, where all the testings have the same meaning

as

explained in table [l
Figure [ shows how noisy training images could affect the recognition rate.

It’s obvious that when the training set is not aligned very well, all the testing
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cases fail, including using probe bags and gallery bags. So it’s very important to
remove noisy training images from corrupting the training subspace.

Figure [ [ and [@ show recognition error rates on three different testing com-
binations. The testings have the same meaning as explained in table Bl Optimal
1 means training with aligned bags, and optimal 2 means training with aligned
single images. Iterl and Iter3 means the first iteration and the 3rd iteration
of the base selection procedure. We can see that in all cases, the 3rd iteration
results is better than the 1st iteration results. It supports our claim that ex-
tremely poorly registered images will not benefit the learning algorithm. We
use our multiple-instance learning algorithm to exclude those bad training im-
ages from corrupting the training base. Also interestingly, in all tests, optimal
1 always performs worst, which indicates that by adding perturbations to the
training base, even very noisy images, we can improve the robustness of learning
algorithms. Note that in all cases, when the number of dimensions increases,
the error rate will first decrease and then increase. Normally we get the best
recognition rate using around the first 50 dimensions (account for 70% of total

energy).
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gallery, single aligned probe gallery, single noisy probe noisy bag probe

4 Conclusions

In this paper, we systematically studied the influence of image mis-alignment
on face recognition performance, including mis-alignment in training sets, probe
sets and gallery sets. We then formulated the image alignment problem in the
multiple-instance learning framework. We proposed a novel supervised clustering
based multiple-instance learning scheme for subspace training. The algorithm
proceeds by iteratively updating the training set. Simple subspace method, such
as FisherFace, when augmented with the proposed multiple-instance learning
scheme, achieved very high recognition rate. Experimental results show that even
with the noisy training and testing set, the Fisherface learned by our multiple-
instance learning scheme achieves much higher recognition rate than the baseline
algorithm where the training and testing images are aligned accurately. Our
algorithm is a meta-algorithm which can be easily used with other methods. The
same framework could also be deployed to deal with illumination and occlusion
problems, with different definition of training bags and training instances.



910

7. Li, Q. Liu, and D. Metaxas

Acknowledgments

The research in this paper was partially supported by NSF CNS-0428231.

References

10.

11.

12.

13.

. Wiskott, L., Fellous, J.M., Kriiger, N., von der Malsburg, C.: Face recognition by

elastic bunch graph matching. In: Sommer, G., Daniilidis, K., Pauli, J. (eds.) CAIP
1997. LNCS, vol. 1296, pp. 456-463. Springer, Heidelberg (1997)

Kirby, M., Sirovich, L.: Application of the karhunen-loeve procedure for the char-
acterization of human faces. IEEE Transactions on Pattern Analysis and Machine
Intelligence 12(1), 103—-108 (1990)

Turk, M., Pentland, A.: Face recognition using eigenfaces. In: Proceedings of IEEE
Computer Vision and Pattern Recognition, pp. 586-591. IEEE Computer Society
Press, Los Alamitos (1991)

. Belhumeur, P.N., Hespanha, J., Kriegman, D.J.: Eigenfaces vs. fisherfaces: Recog-

nition using class specific linear projection. IEEE Transactions on Pattern Analysis
and Machine Intelligence 19(7), 711-720 (1997)

Etemad, K., Chellappa, R.: Discriminant analysis for recognition of human face im-
ages. In: Bigiin, J., Borgefors, G., Chollet, G. (eds.) AVBPA 1997. LNCS, vol. 1206,
pp. 127-142. Springer, Heidelberg (1997)

Phillips, P.J., Moon, H., Rizvi, S.A., Rauss, P.J.: The FERET evaluation method-
ology for face-recognition algorithms. IEEE Transactions on Pattern Analysis and
Machine Intelligence 22(10), 1090-1104 (2000)

Martinez, A.: Recognizing imprecisely localized, partially occuded and expression
variant faces from a single sample per class. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24(6), 748-763 (2002)

Shan, S., Chang, Y., Gao, W., Cao, B.: Curse of mis-alignment in face recognition:
Problem and a novel mis-alignment learning solution. In: Proceedings of Interna-
tional Conference on Automatic Face and Gesture Recognition, pp. 314-320 (2004)
Viola, P., Platt, J.C, Zhang, C.: Multiple instance boosting for object dection. In:
Proceedings of Neural Information Processing Systems (2005)

Maron, O., Lozano-Perez, T.: A framework for multiple-instance learning. In: Pro-
ceedings of Neural Information Processing Systems, pp. 570-576 (1998)

Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vecctor machines for
multiple-instance learning. In: Proceedings of Neural Information Processing Sys-
tems, pp. 561-568 (2002)

Wang, J., Zucker, J.D.: Solving multiple-instance problem: A lazy learning ap-
proach. In: Proceedings of International Conference on Machine Learning, pp.
1119-1125 (2000)

Blum, C., Blesa, M.J.: New metaheuristic approaches for the edge-weighted k-
cardinality tree problem. Computers and Operations Research 32(6), 1355-1377
(2005)



	Face Mis-alignment Analysis by Multiple-Instance Subspace
	Introduction
	Related Work

	Multiple-Instance Subspace Learning
	Motivation
	Approximating the Constrained k-Minimum Spanning Tree
	Testing Procedure

	Experimental Results and Discussions
	Testing with Well-Aligned Training Data
	Testing with Noisy Training Data

	Conclusions



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.01667
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 2.00000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /False

  /SyntheticBoldness 1.000000
  /Description <<
    /DEU ()
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.000 842.000]
>> setpagedevice




