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ABSTRACT
Corner detection plays an important role in object recognition

and motion analysis. In this paper, we propose a hierarchical

corner detection framework based on spectral clustering (SC).

The framework consists of three stages: contour smoothing,

corner cell extraction and corner localization. In the contour

smoothing stage, wavelet decomposition is imposed on the

raw contour to reduce noise. In the corner cell extraction

stage, several atomic corner cells are obtained by SC. In the

corner localization stage, the corner points of each corner cell

are located by the corner locator based on the kernel-weighted

cosine curvature measure. Experimental results demonstrate

the superiority of our framework.

Index Terms— corner detection, spectral clustering, mean

shift

1. INTRODUCTION

Corner detection is a common foundation in many applica-

tions of computer vision and image processing. Due to the

robustness to scale, rotation, and translation variations, cor-

ners are very suitable for object matching and recognition. In

this paper, we mainly focus on corner detection of contour

images.

In recent years, much work has been done in corner de-

tection of contour images. Rattarangsi and Chin [1] set up

a Gaussian scale space to detect corner points on a 2D pla-

nar curve. Urdiales et al. [2] detect the corners by filtering

the contour curvature function adaptively. Teh and Chin [3]

propose a support region-based algorithm to find dominant

points in a digital closed curve. A multi-scale corner detec-

tion method based on continuous wavelet transform is pro-

posed in [4]. The corner points are located according to the

local wavelet transform modulus maxima of the contour ori-

entation. Gao et al. [5] present a dyadic wavelet transform-

based method for corner detection. Accurate localization of

corner points is achieved due to taking the local natural scale

based strategy instead of the global one. Li and Chen [6] de-

tect the corners using fuzzy reasoning such that the problem

of corner detection is mapped to that of fuzzy classification.

The common ground of the above methods is that they take a

bottom-up strategy for corner detection. Corner localization

is achieved according to the cue of local gradient-varying in-

formation. They all ignore the global shape information of

the contour. As a result, corner detection results are usually

sensitive to noise.

In this paper, we take a top-down strategy for corner de-

tection. A hierarchical clustering-based corner detection frame-

work is proposed. In the framework, an undirected graph

is used for capturing the spatial and sequential relationships

among contour points. We take advantage of a classic graph-

theoretic clustering algorithm called spectral clustering (SC)

[7] to partition the entire contour into several atomic cells.

With efficiency and effectiveness in clustering data with com-

plex structure, SC is very promising for multi-class data learn-

ing.

2. OUR CORNER DETECTION FRAMEWORK

2.1. Overview of the framework

Our corner detection framework includes three stages: con-

tour smoothing, corner cell extraction, and corner localiza-

tion. In the contour smoothing stage, two-level wavelet de-

composition is used to smooth the raw contour. In the cor-

ner cell extraction stage, spectral clustering (SC) is exploited

to decompose the smoothed contour into several atomic cells.

Mean shift [8], a nonparametric kernel density estimation tech-

nique, is embedded in SC. And then the corner cells are se-

lected according to the cue of our proposed kernel-weighted

cosine curvature measure (KCCM). For each corner cell, the

corner points are located by our KCCM-based corner locator

in the corner localization stage.

2.2. Contour smoothing

In this paper, multi-resolution wavelet decomposition [9] is

used to smooth contours. As we know, any square-integrable

signal can be decomposed into a high-frequency signal and

a low-frequency signal by wavelet decomposition. The high-

frequency signal provides detailed information of the original

signal while the low-frequency signal reserves the main struc-

tural characteristics. Consequently, the low-frequency signal

can be viewed as a “smoothed” one of the original signal. The

details of contour smoothing are described as follows.
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A contour is first unwrapped at a randomly selected con-

tour point. As a result, the contour is represented as two 1D

signals which are x-coordinate and y-coordinate respectively.

Due to the closure property of a contour, we should employ a

periodical signal to capture its spatial and sequential informa-

tion. To simplify the computation of contour smoothing, we

only consider three periods. Thus, the contour is represented

as: (
X
Y

)
=

⎛
⎜⎜⎝

×3︷ ︸︸ ︷
x1 x2 · · · xn−1 xn

y1 y2 · · · yn−1 yn︸ ︷︷ ︸
×3

⎞
⎟⎟⎠ (1)

where n is the number of points on that contour. We impose

a two-level wavelet decomposition respectively on X and Y ,

and then obtain the position expression of the smoothed con-

tour:

(
Xs∗

e

Y s∗
e

)
=

⎛
⎜⎜⎜⎜⎝xs∗

1 · · ·xs∗
n

Truncated︷ ︸︸ ︷
xs∗

n+1 · · ·xs∗
2n xs∗

2n+1 · · ·xs∗
3n

ys∗
1 · · · ys∗

n ys∗
n+1 · · · ys∗

2n︸ ︷︷ ︸
Truncated

ys∗
2n+1 · · · ys∗

3n

⎞
⎟⎟⎟⎟⎠ (2)

where Xs∗
e and Y s∗

e respectively denote the smoothed signals

of the original X and Y at the resolution 2−2. In this way, we

obtain the final smoothed contour by truncating Xs∗
e and Y s∗

e

respectively from the (n + 1)th element to the (2n)th one.

Consequently, the final smoothed contour can be represented

as: (
Xs

Y s

)
=

(
xs∗

n+1 xs∗
n+2 · · · xs∗

2n

ys∗
n+1 ys∗

n+2 · · · ys∗
2n

)
(3)

2.3. Corner cell extraction

We take a divisive clustering structure for corner cell extrac-

tion. The entire contour is decomposed by SC into several

atomic cells. Then the corner cells are selected according

to the KCCM-based corner discrimination criterion function.

Fig. 1 shows the architecture of corner cell extraction. The

details of corner cell extraction are described in the following

three subsections.

2.3.1. Mean shift clustering

Mean shift [8], a nonparametric kernel density estimator, seeks

the nearest mode of a point sample density function. It is an

instance of gradient ascent with an adaptive step size. Con-

sequently, point samples can be learned efficiently and adap-

tively by the mean shift given the kernel and the bandwidth

matrix. The core of the mean shift is to calculate an offset

according to the mean shift vector represented as:

m(x) =
∑n

i=1 xig(‖x−xi

h ‖2)∑n
i=1 g(‖x−xi

h ‖2)
− x (4)

where g(x) = −k′(·) which denotes the first derivative of

the kernel profile k(x), h is a bandwidth parameter, and ‖ · ‖
denotes the L2 norm. In our framework, the kernel profile

k(·) is chosen as:

k(x) = exp(−1
2
x) x ≥ 0 (5)

In this way, we have the standard mean shift procedure which

takes iteratively the following steps:

• computing the mean shift vector m(xk),
• updating the current position xk+1 = xk + m(xk).

The mean shift clustering algorithm [8] is just a practical ap-

plication of the mode finding procedure:

• run the mean shift procedure to find the stationary points

of the density function,

• prune these points by retaining only the local maxima.

The set of data points converging to the same mode is defined

as the basin of attraction of that mode. Each basin of attrac-

tion corresponds to a cluster.

2.3.2. Spectral clustering
Spectral clustering is a graph-theoretic unsupervised leaning

technique. It is efficient in handling multi-class learning. Many

different versions exist for spectral clustering. In our frame-

work, we propose an improved version based on [7]. The

algorithm applies the mean shift to clustering the data instead

of the KMeans used in [7]. The specific procedure of our al-

gorithm is detailed as follows.

Given the data set X = {pi : 1 ≤ i ≤ n} where pi =
(xi, yi), we cluster the data set X into a number of classes

using the following procedure:

1. Compute the similarity matrix A, where Aij is defined

as: Aij = exp[−(d2
ij/2σ2

d + g2
ij/2σ2

g)] in which dij

and gij respectively denote the Euclidean distance and

the shortest contour geodesic distance between points i
and j.

2. Construct the matrix L = D−1/2AD−1/2, where D is

a diagonal matrix with its ith diagonal element equal to

the sum of the elements in the ith row of A.

3. Obtain a new matrix E = [e1, e2, . . . , eK ] formed by

the normalized K largest eigenvectors of L.

4. Apply the mean shift clustering algorithm to classify-

ing row vectors of E into a number of clusters auto-

matically.

2.3.3. Corner discrimination
Now, we are ready to discuss corner discrimination in details.

A KCCM is developed to capture the gradient-varying infor-

mation of the contour points. The details of the KCCM are

described as follows. Given an n-point contour cell C = {pl :
1 ≤ l ≤ n} where pl = (xl, yl), the KCCM is defined as:

KCCM(k)=

∑
i<k

∑
j>k exp(−g2

ij/σ2
g)θ

cikj∑
i<k

∑
j>k exp(−g2

ij/σ2
g)

(6)

where 2 ≤ k ≤ n − 1, gij denotes the geodesic distance

between points i and j, σg is a scaling factor, and the angle

θ
cikj

between
−→
ki and

−→
kj is calculated as:
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Fig. 1. The architecture of corner cell extraction.

θ
cikj

= arccos

(
d2

ik + d2
kj − d2

ij

2dikdkj

)
(7)

where dmn denotes the Euclidean distance between points

m and n. Let MCCM = min
2≤k≤n−1

[KCCM(k)]. Conse-

quently, the criterion function for corner discrimination is de-

fined as:

C =
{

non-corner cell if MCCM > T d

corner cell otherwise.
(8)

2.4. Corner localization

We propose a KCCM-based corner locator, which detects the

corner point by finding the local minima of the KCCM. Let

Cp be the corner points we expect to detect; pk be the kth

point of an n-point contour. Consequently, Cp is located by

the following rule:

Cp = {pk|KCCM(k) < T l, pk ∈ Ω} (9)

where KCCM(·) is defined in (6), and Ω corresponds to the

set consisting of all the local minima of KCCM.

3. EXPERIMENTAL RESULTS

In our experiments, a total number of 50 complex contours

are tested by the corner detection framework. Their corners

are pre-labeled manually in order to test the performance of

our framework effectively. In the corner cell extraction stage,

the threshold T d used for corner cell discrimination is set as

2.6. Moreover, the settings of σd and σg mentioned in the first

step of SC are obtained from experiments. In the third step of

SC, the criterion for selecting K is defined as:

K = min

⎛
⎝{k|

k∑
i=1

λi/
n∑

j=1

λj > 0.95, 1 ≤ k ≤ n}
⎞
⎠ (10)
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Fig. 2. An example of corner detection. (a) A noisy con-

tour. (b)The smoothed contour. (c) The results of corner cell

extraction. (d) The results of corner localization.

where λl(1 ≤ l ≤ n) denotes the lth eigenvalue of the matrix

L referred to in the second step of SC. The bandwidth param-

eter h of the mean shift procedure is set as 0.5. The setting

of σg defined in (6) is also obtained from experiments. In the

corner localization stage, the threshold T l is set as 1.6. We

take the noisy rectangle-like contour shown in Fig. 2(a) for

example to illustrate the entire process of the corner detec-

tion. The contour after contour smoothing is shown in Fig.

2(b). Then it is decomposed by SC into four atomic corner

cells. Subsequently, the corner localization is achieved by the

KCCM-based corner locator detailed in Section 2.4. The fi-

nal corner detection results are shown in Fig. 2(d). For better

visualization, we just choose to display twelve typical con-

tours after the corner detection. They are shown in Fig.3 from

which we see that our framework is able to find the corner

points accurately with the disturbances of noise.

In order to evaluate the performance of the corner detec-

tion framework quantitatively, we define a criterion function

for measuring the corner detection accuracy. Given an N-

point contour denoted as C = {pi|1 ≤ i ≤ N, pi = (xi, yi)},

we introduce an indicator vector LC = {si|1 ≤ i ≤ N} to

represent C’s corner label information. The ith element si of

LC is defined as:

si =
{

1 if pi is detected as a corner point

0 otherwise.
(11)

Then we divide the interval {1, 2, . . . , N} into J equal subin-

tervals which are denoted as: I1, I2, . . . , IJ . All the points

in the contour are mapped to their corresponding subinter-

vals. We calculate ri = Nc
i

Ni
where Ni represents the number

of contour points in Ii, and N c
i =

∑
j∈Ii

sj which denotes

the number of detected corner points in Ii. As a result, we

obtain C’s corner label distribution vector (CLD) denoted as:

(r1, . . . , rJ). The Euclidean distance is used to measure the

similarity of two CLDs. Let CLDd be the CLD obtained by
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Fig. 3. The results of corner detection. Each circle corresponds to a corner point.

a corner detection method, CLDm be the CLD corresponding

to the ground truth derived from manual labelling, and Edm

be the Euclidean distance between CLDd and CLDm. The

similarity Sdm of CLDd and CLDm is defined as:

Sdm =
e
2(1− 1√

J
Edm) − 1

e2 − 1
∈ [0, 1] (12)

The larger the Sdm, the better the corner detection result.

Consequently, we evaluate the performance of our framework

by determining the similarity Sdm. In the experiments, J is

set as 50. We make a comparison among three corner detec-

tion methods which are Rattarangsi and Chin’s [1], Gao et
al.’s [5], and ours. Fig. 4 shows the corner detection accu-

racy of the above three methods. The x-axis and the y-axis

respectively correspond to contour ID number and the accu-

racy Sdm described above. It is seen from Fig. 4 that our

framework performs best.

4. CONCLUSION

We have proposed a hierarchical corner detection framework

based on the spectral clustering in which the mean shift is em-

bedded. Wavelet decomposition has been used for smoothing

contours. Meanwhile, a novel kernel weighted cosine curva-

ture measure has been proposed. Experimental results have

demonstrated the effectiveness and the promise of our frame-

work.
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