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Abstract. The traditional co-training algorithm, which needs a great
number of unlabeled examples in advance and then trains classifiers by
iterative learning approach, is not suitable for online learning of classi-
fiers. To overcome this barrier, we propose a novel semi-supervised learn-
ing algorithm, called MAPACo-Training, by combining the co-training
with the principle of Maximum A Posteriori adaptation. This MAPACo-
Training algorithm is an online multi-class learning algorithm, and has
been successfully applied to online learning of behaviors modeled by Hid-
den Markov Model. The proposed algorithm is tested with the Li’s data-
base as well as Schuldt’s dataset.

1 Introduction

Behavior modeling is driven by a wide range of applications, such as advanced
user interface, visual surveillance, virtual reality and so on. The most existing
works in this field focused on modeling the behaviors with manually labeling like
[1,2,3,4]. For example, Li and Greenspan [1] built a multi-scale model from time-
varying contours and Gong and Xiang [2] learned a Dynamically Multi-Linked
Hidden Markov Model (DML-HMM). However, manual labeling of behavior
patterns is laborious, impractical and error prone [5]. Recently, some behav-
ior modeling methods based on semi-supervised/unsupervised learning [5,6,7,8]
have been proposed. For instance, Xiang and Gong [5] discovered natural group-
ing of behavior patterns through unsupervised model selection and feature se-
lection, and Zelnik-Manor and Irani [6] used the normalized-cut approach to
automatically cluster the data and then build the statistical behavior model.
Unfortunately, these methods need to get a great number of unlabeled examples
beforehand, which are therefor unsuitable for online learning of behavior mod-
els and cannot automatically adjust the models’ parameters according to the
circumstantial changes.

The co-training approach proposed by Blum and Mitchell [9] is also a semi-
supervised learning method. Levin et al. [10] used the co-training framework
in the context of boosted binary classifiers to build the automobile detectors.
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And Yan and Naphade [11] proposed a multi-view semi-supervised learning al-
gorithm which avoids the requirement of the co-training approach about that
each view of examples is sufficient for learning the target concepts. However,
these methods belong to the off-line learning category. Javed et al. [12] com-
bined the co-training approach and boosting to propose an algorithm for online
detection and classification of moving objects, where behavior modeling is not
considered.

In this paper, we present a novel semi-supervised learning method called
MAPACo-Training which combines the co-training approach and the principle of
Maximum A Posteriori adaptation [8,13,16]. The proposed method can simulta-
neously train the parameters of multi-class models. We have successfully applied
the method to online learning the parameters of behaviors modeled by Hidden
Markov Model (HMM). Since it only needs a small labeled sample set before-
hand, our method can alleviate the problem in the methods [1,2,3,4]. And unlike
the approaches [5,6,7,8], the method can automatically adjust the parameters
with the current example online.

The remainder of this paper is organized as follows: Motion signature repre-
sentation is outlined in Section 2. Section 3 is a detailed description of MAPACo-
Training. Experimental results are reported in section 4. And conclusions as well
as future research directions are listed in section 5.

2 Motion Signature Representation

2.1 Feature Extraction

Background subtraction is used to detect foreground. In our approach, two types
of features are considered: (1) shape feature; (2) optical flow feature [14].

The size of the foreground region varies with the distance of object to camera,
camera parameters and the size of object. We therefore need to normalize the
foreground region. Firstly, we equidistantly divided the bounded rectangle of the
foreground into U × V non-overlapping sub-blocks. Then, the normalized value
of each sub-block is calculated as follows:

x1
i = s−sub(i)/max, i = 1, 2, . . . , num, (1)

where num = U × V is the number of sub-blocks; s sub(i) is the number of the
foreground pixels in the ith sub-block; max is the maximum value of {s sub(i),
i = 1, 2, . . . , num}. The optical flow value of each sub-block is calculated as
follows:

xj
i = f−sub(i, j)/sum(i), i = 1, 2, . . . , num, j = 2, 3, (2)

where f sub(i,j) with j = 2, 3 are respectively the sum of horizontal, vertical
optical flow in the ith sub-block; sum(i) is the pixel number in the ith sub-block.
Then, the feature vectors at frame t from shape and optical flows are as:

od
t = [xd

1, x
d
2, . . . , x

d
num], d = 1, 2, 3.
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2.2 Motion Signature Representation

Given the observation feature sequences Od
T = {od

1, o
d
2, · · · , od

t , · · · , od
T }, two dif-

ferent Hidden Markov Models (HMMs) are adopted to build the behavior models.
The one is a single continuous HMM from shape, and the other is like a Par-
allel Hidden Markov Model (PHMM) with two continuous HMMs from optical
flow. These HMM topologies are shown in Figure 1, where shade circles are as
observation nodes and clear circles as hidden nodes. For optical flow model, the
two HMMs are learned independently. The output probability density function
of learning is the following Gaussian Mixture Model (GMM):

p(od
t |θ) =

K∑

k=1

αkpk(od
t |μk, Σk) (3)

where θ = {αk, μk, Σk, k = 1, 2, . . . , K} represents the parameters of GMM
including weight αk, mean value μk and covariance matrix Σk of every mixture

component;
K∑

k=1
αk = 1.

(a) (b)

Fig. 1. HMM topology: (a) shape model; (b) optical flow model

By the Forward procedure, we compute the observation probabilities
P (Od

T |λd
c), c = 1, 2, . . . , C for the observation feature sequences Od

T , where C
is the class number of behaviors and λd

c is the HMM parameter set of the cth

class behavior. Since the output probability density function is GMM, the prob-
abilities are normalized [15] as follows:

P̄ (Od
T |λd

i ) = P (Od
T |λd

i )/
∑C

c=1
P (Od

T |λd
c ). (4)

And for optical flow model (Figure 1(b)), the following operation is further
performed as:

P̄ (O2,3
T |λ2,3

i ) =
P̄ (O2

T |λ2
i )P̄ (O3

T |λ3
i )∑C

c=1 [P̄ (O2
T |λ2

c)P̄ (O3
T |λ3

c)]
. (5)

The Bayes classifier is used as our base classifier. According to the Bayes rule,
the posterior
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P (c|Od
T ) = P̄ (Od

T |λd
c)P (c)/P (Od

T ),

where P (c)=1/C, so P (c|Od
T ) ∝ P̄ (Od

T |λd
c). Thus if P̄ (Od

T |λd
c0

)=max
c

P̄ (Od
T |λd

c),

Od
T belongs to the c0–th behavior.
In our proposed algorithm, we set f i

1 = P̄ (O1
T |λ1

i ) and f i
2 = P̄ (O2,3

T |λ2,3
i ).

3 MAPACo-Training

In this section, we propose a new semi-supervised learning algorithm called Maxi-
mum A Posteriori Adaptation Co-Training (MAPACo-Training) which attempts
to learn behavior models online. We first describe the principle of MAP adapta-
tion, and then give the details of MAPACo-Training.

3.1 MAP Adaptation

MAP adaptation has widely been used in speaker and face verification [13].
Recently, Zhang et al. in [8,16] used it for unusual event detection and meeting
event recognition. During the course of learning the parameters of GMM-based
HMM in [8,16], the state-transition probabilities are kept fixed while the mean,
variance and mixture weights are adapted as follows:

(1) According to the existing parameters, new statistical values are computed:

P (i|od
t ) = αipi(od

t |μi, Σi)
/∑K

k=1
αkpk(od

t |μk, Σk) (6)

αnew
i =

∑T

t=1
P (i|od

t )
/

T (7)

μnew
i =

∑T

t=1
od

t P (i|od
t )

/∑T

t=1
P (i|od

t ) (8)

Σnew
i =

∑T
t=1 P (i|od

t )(o
d
t − μnew

i )(od
t − μnew

i )T

∑T
t=1 P (i|od

t )
(9)

(2) New parameters are estimated as follows:

α̂i = ρ · αnew
i + (1 − ρ) · αold

i (10)

μ̂i = ρ · μnew
i + (1 − ρ) · μold

i (11)

Σ̂i = ρ · Σnew
i + (1 − ρ) · [Σold

i + (μ̂i − μold
i )(μ̂i − μold

i )T ] (12)

where ρ(0 ≤ ρ ≤ 1) is the scale factor.
We use the principle of MAP adaptation into our algorithm. More details

about MAP adaptation can be found in [8,13,16].
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3.2 MAPACo-Training Algorithm

The traditional co-training algorithm [9] needs to get a great number of un-
labeled samples in advance and then train models by an approach of iterative
learning. It is an off-line learning method. By combining the co-training and the
MAP adaptation, we propose a novel online multi-class learning algorithm called
MAPACo-Training as follows:

Input: Labeled data L including a small training sample set Ltr and a small
validation sample set Lv with two views V1 and V2, threshold value Th > 1 and
Tnum ≥ 1.

Output: a classifier from the probabilitiesf1, f2, ..., fC .

MAPACo-Training

1. Create f i
1 and f i

2 (i = 1, 2, . . . , C) using Ltr on V1 and V2. Set the new
training sample set of each one of the C classes Li

b = φ (b=1,2);
2. For k = 1, 2, . . . , C

(a) For current sample S, assume n = max
j

{f j
1 ,j = 1, 2, . . . , C, j �= k},

m = max
j

{f j
2 , j = 1, 2, . . . , C, j �= k},

i. if fk
1 /fn

1 ≥ Th, the view V2 of sample S is added into Lk
2 as a new

sample;
ii. if fk

2 /fm
2 ≥ Th, the view V1 of sample S is added into Lk

1 as a new
sample;

iii. if 1 < fk
1 /fn

1 < Thand 1 < fk
2 /fm

2 < Th, the view V1 of sample S is
added into Lk

1 as a new sample and the view V2 of sample S is added
into Lk

2 as a new sample.
(b) if the sample number in Lk

b equals Tnum, the parameters of model fk
b

are updated according to MAP equations (6)∼(12) with these samples
in Lk

b and the scale factor ρ is decided by validation sample set Lv. And
then let Lk

b = φ.
3. Combine f i = ω1f

i
1 + ω2f

i
2 (ω1 + ω2 = 1) using Lv.

4. Create a new classifier using f i according to the Bayes theory.

Similar to co-training, two base classifiers of every class model need to be
trained on separate features of the same sample. How to select samples to train
the models? In this algorithm, we use a threshold Th to do it. The conditions
(i)(ii) show if one base classifier can predict the label of the sample confidently,
then we add this sample into the training set of the other base classifier of the
corresponding class. The condition (iii) means that both base classifiers can get
the same label according to the bayes rule, but neither of them is confident, which
shows the sample is useful for improving the performance of the two classifiers.

During the course of updating parameters by MAP adaptation equations
(6)∼(12), we use validation set Lv to decide the scale factor ρ. If the class
prediction for a sample from the conditions (i)∼(iii) is not correct, which means
the sample is a noise, the sample is no longer used for further learning by setting
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ρ = 0 according to Lv. In our experiment, we assume the possible value of ρ is
0 or a constantρ̄ (0 ≤ ρ̄ ≤ 0.5).

Remark: From the equations (6)∼(12), we can see that the MAP adaptation
only uses the current samples to calculate the new statistical values and then
gets the new parameters by simple weighted estimation. It avoids to directly
train the HMM parameters from a great number of samples by EM algorithm
and improves the computational efficiency. The MAPACo-Training algorithm
starts from a small label sample set Ltr and then updates the parameters by the
MAP adaptation. So the algorithm is suitable for online multi-class learning.

4 Experiments

We test our method from two datasets: Li’s dataset [17] and Schuldt’s dataset
[18]. In the experiments, U=9 and V =5 are used for dividing the bounded rec-
tangle of foreground. To each type of features such as shape, horizontal optical
flow and vertical optical flow, the Principal Component Analysis (PCA) is used
to reduce the 45-dimensional features to the 8-dimensional ones.

4.1 Results on Li’s Dataset

We get a video consisting of five kinds of behaviors from Li’s dataset [17], of
which each one is performed by 18 subjects. Image size is of 160×120 pixels and
frame rate is of 6 frames/sec. The video totals 38120 frames including “box”
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Fig. 2. The learning curves: (a) box; (b) kick; (c) lookround; (d) standup (e) wave; (f)
average HTER
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Table 1. Initial confusion matrix

box kick lookround standup wave
box 37.14 34.29 7.62 8.57 12.38
kick 12.86 72.86 1.90 12.38 0
lookround 1.43 1.90 92.86 3.33 0.48
standup 1.43 33.80 0.48 63.81 0.48
wave 16.67 2.38 14.76 5.24 60.95

Table 2. Final confusion matrix

box kick lookround standup wave
box 54.76 18.10 3.33 7.14 16.67
kick 0 86.67 1.43 11.42 0.48
lookround 0 0 95.72 3.33 0.95
standup 0.95 3.80 0.48 94.29 0.48
wave 10.95 0.95 1.43 5.24 81.43

(8000 frames), “kick” (7600 frames), “lookround” (7820 frames), “standup”
(7040 frames) and “wave” (7660 frames). We slice this video sequence into 3810
segments with the fixed time duration of 20 frames and the step length of 10
frames, where 25 segments in every class are selected for the small training sam-
ple setLtr, 12 segments for the validation sample set Lv, 210 segments for the
test sample set and the remaining segments for online learning. Parameters in
our algorithm are preset as: Th=1.5, Tnum=5 and ρ̄ = 0.2. MAP adaptation
is only used to update the means. The proposed algorithm is implemented in
Matlab 6.0 and tested on a 2.0 GHz Pentium 4 PC with 256MB memory. The
average time per frame is about 0.228s. As a result, our algorithm at the cor-
rect implement could be used for those applications with a frame rate of 6∼10
frames/sec.

Figure 2 gives the learning curves for behavior models of “box”, “kick”,
“lookround”, “standup”, “wave” and average half-total error rate (HTER),
where HTER=(FAR+FRR)/2 [8], FAR is false acceptance rate and FRR is
false rejection rate. The horizontal axis shows the number of effective samples
for estimating the parameters in the MAPACo-Training algorithm. The vertical
axis shows the HTER. Figure 2(f) is the average HTER curve of all behav-
iors. From these curves, we can see the learning performance of behavior models
can be markedly improved by MAPACo-Training, and after about 500 samples
are used, the curves almost become stable. Table 1 gives the initial confusion
matrix from the initial behavior models trained by the small training set Ltr,
and Table 2 shows the final confusion matrix from the final behavior models by
our algorithm. From these tables, we can see that when the initial recognition
rate is low, those for “box”, “kick”, “standup” and “wave”, the final recognition
rate is clearly improved. And when the initial recognition rate is high, that for
“lookround”, the final recognition rate is still high.
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4.2 Results on Schuldt’s Dataset

We get a video sequence of 49813 frames from Schuldt’s dataset [18] including
“box” (8370 frames), “clap” (8476 frames), “wave” (8275 frames), “run” (7945
frames), “jog” (8170 frames) and “walk” (8577 frames). We slice this video se-
quence into 4978 segments with the fix time duration of 25 frames and the step
length of 10 frames, where 30 segments in each class are selected for the small
training sample set Ltr, 16 segments for the validation sample set Lv, 240 seg-
ments for the test sample set, and the remaining segments for online learning.
Parameters in our algorithm are preset as: Th=1.5, Tnum=5 and ρ̄ = 0.4. MAP
adaptation is only used to update the means and variances.

Figure 3 shows the learning curves. We can see that the learning results for
all the behaviors except “run” are very good. For the behavior “run”, the main
reason of poor performance is that running of some people is very similar to the
jogging of the others in this dataset [18], which is difficult to distinguish. From
the initial confusion matrix (Table 3) and the final confusion matrix (Table 4),
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Fig. 3. The learning curves: (a) box; (b) clap; (c) wave; (d) run; (e) jog; (f) walk; (g)
average HTER (h) run+jog
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Table 3. Initial confusion matrix

box clap wave run jog walk
box 79.17 2.50 2.92 3.33 3.33 8.75
clap 24.17 53.75 9.17 3.33 2.08 7.50
wave 6.25 8.75 60.00 2.50 18.75 3.75
run 0.42 0 0 80.00 14.16 5.42
jog 2.50 4.58 0 50.42 31.67 10.83
walk 7.08 1.67 0 25.83 8.75 56.67

Table 4. Final confusion matrix

box clap wave run jog walk
box 94.58 2.50 2.08 0 0 0.84
clap 3.33 94.17 2.50 0 0 0
wave 0 7.50 91.25 1.25 0 0
run 0.83 0 0 64.17 30.42 4.58
jog 0.42 0.42 2.08 30.42 59.58 7.08
walk 0.41 0.42 3.33 17.92 20.00 57.92

we can see the confusion values between a pair of behaviors other than “run”
and “jog” are not high. But for “run” and “jog”, the HTER about “run” is only
increased from 18.5% to 23% and nearly unchanged after about 2000 samples
while the HTER about “jog” is declined from 38.5% to 24.5%. When we regard
“run” and “jog” as one behavior “run+jog”, the result becomes quite satisfactory
as shown in Figure 3(h).

5 Conclusion

In this paper, we proposed a semi-supervised learning algorithm called MAPACo-
Training, which combines the traditional co-training algorithm and the principle
of MAP adaptation. The algorithm is suitable for online learning of behaviors
modeled by HMM. Experiments on two datasets also validate our method. In
the future, we will explore a better way to train the models of similar behaviors
like “run” and “jog”.
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