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Abstract. Current iris recognition systems can achieve high level of
success under restricted conditions, while they still face challenges of uti-
lizing images with heavy deformation caused by illumination variations.
Developing methods to alleviate the deformation becomes a necessity,
since the requirement of uniform lighting is often not practical. This
paper introduces a novel algorithm to counteract elastic iris deforma-
tion. In the proposed algorithm, for nonlinear iris stretch, the distance
of any point in the iris region to the pupil boundary is assumed to be the
corresponding distance under linear stretch plus an additive deviation.
Gaussian function is employed to model the deviation. Experimental
results on two databases with nonlinear deformation demonstrate the
effectiveness of the algorithm. The proposed iris deformation correction
algorithm achieves a lower Equal Error Rate (EER), compared to the
other two linear and nonlinear normalization methods in the literature,
making the system more robust in realistic environments.

1 Introduction

Since last decade, researchers have put great efforts in automatical personal
identification based on biometrics. Iris pattern is considered as one of the most
reliable biometric modalities due to the abundant distinctive information pre-
served in the iris texture. Current iris recognition systems can achieve good per-
formance under restricted conditions. However, they still encounter challenges
in realistic environments with significantly large illumination variations. Pupil
dilation and contraction caused by illumination change make the iris texture
undergoes nonlinear deformation. Iris normalization is important to iris recogni-
tion as it intends to reduce the effect of iris deformation. As the majority of iris
recognition systems employ linear normalization, which is unsatisfactory in han-
dling nonlinear iris distortion, it is necessary to develop nonlinear normalization
methods to counteract the deformation.

Although iris recognition has been investigated over the past decade, only a
few works focus on the deformation issue. Daugman [1] used a Rubber-sheet
model based normalization which linearly project the annular iris region into
a fixed rectangle: I(x(r, θ), y(r, θ)) → I(r, θ). Yuan and Shi [2] employed a iris
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Fig. 1. Deformed image samples which can not align well under linear normalization

meshwork model proposed by Wyatt [3], and from which they deduced the re-
lationship of iris collagen fibers between different pupil sizes. Li [4] used local
calibration to alleviate iris distortion. Most of the existing systems employ Daug-
man’s [1] linear iris normalization algorithm. However, some heavily deformed
images still pose a challenge to linear normalization. Fig. 1 shows an example.
Fig. 1(a) and Fig. 1(c) are two images captured from the same iris, but with
very different pupil sizes. They can not align well under linear normalization,
which is shown in Fig. 1(b) and Fig.1(d), especially in the zoomed region.

Human iris is an internal organ that is visible externally. The movement of
iris (mainly dilation/contraction) controls the pupil size and thus dominates
the amount of light that enter the eye through the pupil. According to [3],
pupil diameter may range from a minimum of about 1.5mm to a maximum of
over 7mm. Such distortion of iris texture may enlarge intra-class variations or
increase the False Reject Rate (FRR). A major goal of this paper is to introduce
a novel method to compensate elastic iris deformation. Motivated by Wyatt’s
[3] iris mesh model, we use a nonlinear deformation correction algorithm that
utilizes Gaussian function to approximate the additive deviation of nonlinear iris
stretch. The effectiveness of the algorithm is confirmed by experiments on two
databases, both of which are collected under illumination changes. Our method
achieves better recognition performance than the other two methods.

The rest of this paper is organized as follows. Section 2 describes the proposed
nonlinear deformation correction algorithm. Section 3 gives the experimental
results and discussion. Section 4 concludes the paper.

2 Nonlinear Iris Deformation Correction

A complete framework of iris recognition system with deformation correction is
plotted in Fig. 2.
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Fig. 2. The framework of iris recognition system with deformation correction

2.1 Iris Model

Iris collagen fibers are generally considered as radial components, which is also
the assumption made by linear normalization methods. With the stretch of these
radial fibers, the fibers near pupil boundary would undergo larger deformation
than those fibers near iris boundary. One disadvantage of this assumption lies
in the contradiction that iris structure requires very good mobility whereas iris
collagen fibers are relatively inextensible tissues.

In this paper, we employ a meshwork “skeleton” of iris structure which was
proposed by Rohen [5]. In the “skeleton” model, a series of fibrous arcs (left
arcs and right arcs) which connect pupil boundary and iris boundary are inter-
weaving together to form iris structure, as Fig. 3 shows. We do not consider iris
meshwork model as exactly the human iris structure. But we believe that it is
more reasonable in two aspects: first, this structure is much more complicated
than the over-simplified radial one. It is highly flexible and fits for the pupil
movements. Second, while the radial fibers go through acute change with pupil
diameter varies, which makes people easy to feel fatigable, the meshwork model
provides a possibility that the length of each arc undergoes less change.

As the meshwork model is also employed by Yuan and Shi [2], we give a brief
comparison to these two employments. In Yuan’s method, they made several
assumptions: 1, the angles (θ in Fig. 4(a)) that correspond to iris fibrous arcs is
90◦; 2, the fibrous arcs are part of circle so that the relationship between linear
and nonlinear stretch can be acquired by solving two equations of circles. In the
proposed method, we do not make such constraints because the angle θ would
hardly remain constant and fibrous arcs would hardly remain as circles during
the frequent change of pupil diameter. Instead we use a flexible assumption
(Eq. 1) and acquire iris deformation model by statistical learning. Experimental
results show that the proposed method is more reasonable in dealing with the
deformation problem.

Fig. 4(a) illustrates the basic idea of the meshwork model. Suppose the solid
line in Fig. 4(a) represents one fibrous arc in linear stretch model, and the dashed
line represents the same arc in nonlinear stretch model. In Wyatt’s treatment
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Fig. 3. Iris meshwork model described by Rohen [5]. (a) Left arcs. (b) Right arcs. (c)
The meshwork model.

(a) (b)

Fig. 4. (a) The relationship between linear and nonlinear iris stretch in Wyatt’s work
[3]. (b) The Gaussian model for additive deviation.

[3] to nonlinear stretch, a point in any position of iris region can be described
as:

Rnonlinear = Rlinear + �R(p,r), (1)

where Rlinear is the position in linear stretch, and �R is the additive deviation
related to Rlinear (denotes as r) and pupil dilation (denotes as p). This deviation
is described by a 6th-order polynomial in Wyatt’s work [3], which is somewhat
arbitrary as long as it is smooth enough to provide any flexibility to support
elastic iris deformation.

2.2 Additive Deviation in Nonlinear Iris Stretch

As mentioned by Wyatt [3], the treatment described by Eq.1 is proved to be the
easiest using fractional radial position instead of absolute radial position as a
variable. Fractional position is defined as:

f =
R − Rp

Ri − Rp
, (2)

here R is the distance of any point in iris region to the pupil center. Rp and
Ri denote pupil radius and iris radius respectively, as Fig. 4(a) shows. In the
remaining part of this paper, we use fractional position to refer to each variable
in Eq.1.
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In linear stretch, the fractional position of a fixed point is invariant as pupil
size varies, therefore linear fractional position Rlinear is an easily determined
part. The key problem is how to model the additive deviation �R. As the 6th-
order polynomial is computationally expensive in real-time applications, we in-
tend to find a simple way to express �R that can make the system both efficient
and accurate.

Generally speaking, �R can be model as a function of pupil radius Rp and lin-
ear fractional position Rlinear , since iris radius Ri is a relatively stable variable.
However, due to the flexible distance from the camera during image acquisition,
iris radius Ri often presents different values. Considering the influence of Ri,
we use the ratio of pupil radius to iris radius T = Rp

Ri
to measure the degree of

iris deformation. Therefore, in the proposed algorithm, we assume that �R is a
function of Rlinear and T , denoted as �R(Rlinear , T ).

2.3 Choice of Iris Deformation Factor

Pupil diameter undergoes small oscillations (“hippus”) once or twice per sec-
ond, even under uniform lighting. Weak illumination causes pupil dilation and
increases the ratio T whereas intense illumination causes pupil contraction and
decreases T . Iris takes much more deformation in dark and bright environment
than in normal environment. According to our statistics, the ratio T of most
irises stay in an interval [Ts, Tl] under uniform lighting. In the proposed method,
we use linear normalization to approximate iris stretch when T is in the threshold
[Ts, Tl]. Otherwise, iris images are treated as nonlinear stretch.

As a measuring parameter, when T > Tl, pupil dilates and iris compresses.
The larger T is, the heavier iris deforms. On the contrary, when T < Ts, pupil
contracts and iris extends. The smaller T is, the heavier iris deforms. In the
proposed algorithm, we set (Ts+Tl

2 −T ) as a factor of the additive deviation �R,
indicating how heavily the deformation is while compared to the non-deformed
images. However, the choice of this deformation factor is not unique. Here we
assume the deviation is described as:

�R = C× F(Rlinear), (3)

here C = (Ts+Tl

2 − T ), and F(Rlinear) is a function of Rlinear .

2.4 The Gaussian Model for Deviation

As how to model iris collagen fibers movement is still an open problem, we learn
F(Rlinear) via training. The training data set: Dk,m = {Di,j|i = 1, 2, ..., k; j =
1, 2, ..., m} contains 600 iris images with k = 10 subjects, and each subject has
an image sequence which contains m = 60 images captured under gradually
varying illumination. Some image samples are shown in Fig. 6(a). We apply the
following procedure to obtain F(Rlinear):
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1. Given an image sequence: Di = {Di,1, Di,2, ..., Di,m}, we mark n prominent
points on every iris image (shown in Fig. 6(a)) and obtain their nonlinear
stretch positions Rnonlinear by measuring the distance between each point
and the pupil boundary.

2. Divide iris region into three annular regions equally, as illustrated in Fig.
6(b). According to their distance to pupil boundary, we use three sets {Pin},
{Pmid} and {Pout}, respectively, to denote the location within each region.

3. Group all the points into the three sets {Pin}, {Pmid} or {Pout} using the
Nearest Neighbor clustering method.

Fig. 5. Iris image samples with heavy elastic deformation

As nonlinear stretch positions Rnonlinear is obtained by locating the points
manually and linear stretch positions Rlinear is approximated by iris stretch
under uniform lighting, �R can be acquired by simply applying Eq. 1. Fig.
6(c) depicts the relationship between �R and pupil dilation T = Rp

Ri
. It shows

that when pupil size is appropriate (T is around 0.47), the deviation reaches the
lowest. When pupil contracts, �R presents a positive deviation. Otherwise pupil
dilates and �R presents a negative deviation.

Fig. 6(c) also shows that the degree of deformation is varying from regions.
Texture in the middle region {Pmid} suffers more deformation than texture near
pupil/iris boundary (regions {Pin}/{Pout}). We rearrange the value of �R to
estimate its relation to Rlinear , shown in Fig. 6(d), which expresses iris defor-
mation from another perspective.

The relationship between �R and Rlinear can be approximated as Gaussian
function (solid line in Fig. 6(d)), with the mean around the center of Rlinear .
�R apparently should be equal to 0 at pupil boundary or iris boundary, that is
to say, the additive deviation should be subjected to: �R = 0, when Rlinear = 0
or 1. In this case σ should be chosen less than μ/3, so that N(μ, σ2) is out of
the interval of [μ− 3σ, μ+3σ], which leads to �R ≈ 0 when Rlinear = 0 or 1. In
the proposed algorithm, μ and σ are learned from training while obeying these
rules.

The index Ci (i = 1, 2, 3, · · ·) in Fig. 6(d) is the deformation factor described
in Eq. 3, indicating the degree of deformation. For each different C, there is a
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different curve to represent the deviation. If C > 0, pupil contracts, iris extends,
and �R appears to be a positive deviation. On the contrary, C < 0, pupil dilates,
iris compresses, and �R appears to be a negative deviation.

Finally F(Rlinear) is expressed as Gaussian function, and a deformed image
can be corrected by compensating the additive deviation �R, which can be
described as:

�R = C× F(Rlinear) = C × N(μ, σ2)

= C× 1√
2πσ

exp {− (Rlinear − μ)2

2σ2
}. (4)

Once the additive deviation �R is chosen as Gaussian function, shown in
Fig. 4(b), nonlinear iris stretch model is able to be measured. The fractional po-
sition of each point under nonlinear stretch is computed based on Eq. 1. Accord-
ing to Eq. 4, every deformed image has 3 parameters to be determined. We de-
note these parameters as P (ci, μi, σi), which is mentioned in our framework (see
Fig. 2).
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Fig. 6. Illustration of training. (a)Recording the location of iris prominent points.

(b)The three annular regions. (c)The relationship between �R and T =
Rp

Ri
. (d)The

relationship between �R and Rlinear.

3 Experiments and Discussion

In this section the proposed nonlinear iris deformation correction algorithm is
evaluated on two databases, both of which possess large pupil size variations.
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We incorporated the proposed algorithm with Daugman’s [1] iris localization
and Ma’s [6] feature extraction algorithm into one recognition system. To elimi-
nate other influences, we only adopt clear images in the experiment. Daugman’s
Rubber-sheet model and Yuan’s nonlinear normalization are also implemented
on the same database for comparison.

3.1 Experiments on DB1

To evaluate the effectiveness of the proposed algorithms in different lighting
condition, we collected a database (denote as DB1) under gradually changing il-
lumination using a hand held device produced by OKI. It contains 30 classes and
each class contains 60 images. Samples of 3 subjects’ images are given in Fig.5,
which shows that there is heavy deformation within each class. T = Rp

Ri
ranges

from a minimum of 0.2353 to a maximum of 0.5902 in DB1. The within class
deformation in DB1 is heavier than any other publicly available databases, there-
fore it is quite challenge. Ten arbitrary classes are selected for training, leaving
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Fig. 7. (a) ROC curve in DB1. (b) ROC curve in CASIA-IrisV3-Lamp
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Fig. 8. (a) Hamming distance (HD) of Linear(Lin) method vs. Gaussian model(GM)
correction. (b) A sample iris texture with GM correction that align better with the
image template. (Lin vs. Tem: 0.459HD; GM vs. Tem: 0.375HD)
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the rest 20 classes for testing. All possible intra-class and inter-class comparisons
are made to evaluate the recognition performance. The ROCs (receiver of oper-
ating curves) of the three methods are shown in Fig.7(a). The EER (equal error
rate) and discriminating index [1] (DI = |µ1−µ2|√

(σ2
1+σ2

2)
2

) are shown in Table 1. The

benefits of our approach are well illustrated in Fig. 8(a), which plots the average
intra/inter-class Hamming distances of the 30 classes in DB1. This figure shows
that our method can reduce the intra-class distance while maintaining the inter-
class distance. Fig. 8(b) shows a corrected iris sample that align better with the
image template in the case of a genuine match.

3.2 Experiments on CASIA-IrisV3-Lamp Database

To get a more convincing result, our second experiment is based on a larger
database. We take 400 classes of iris images from CASIA-IrisV3-Lamp [7] database.
Each class contains 20 images, 10 of which were captured with a lamp on and
the other 10 with the lamp off. So images of this database also contain nonlinear
deformation due to the variation of visible illumination. By excluding the poor
quality image data, only three quarters of the total images are employed in the
experiment. The ROCs are shown in Fig. 7(b). The EER and DI are shown in
Table 2.

3.3 Discussion

The experimental results demonstrate that the proposed deformation correc-
tion algorithm using Gaussian model outperforms the other two methods, by
obtaining a lower EER and higher discriminating index. While Daugman’s [1]
Rubber-sheet model linearly projects iris region into a rectangle, the proposed
Gaussian deformation correction model makes use of iris structure and it can
better alleviate the distortion. Compare to Yuan’s [2] nonlinear normalization,
the proposed method uses a more simple and flexible approach, but achieves
better results, therefore it is more effective in correcting iris deformation.

Table 1. EER and DI on DB1

Daugman Yuan Proposed

EER 1.058% 0.857% 0.733%
DI 4.7094 4.8213 4.9913

Table 2. EER and DI on CASIA-IrisV3-Lamp

Daugman Yuan Proposed

EER 0.973% 0.831% 0.719%
DI 4.7509 4.8409 4.9083

4 Conclusion and Future Work

In this paper, we have proposed a novel method to correct nonlinear iris defor-
mation. In this algorithm, iris images are corrected by compensating the additive
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deviation between nonlinear and linear iris stretch. The additive deviation is de-
scribed by Gaussian function, which is chosen via training. Experimental results
demonstrate that the proposed algorithm can resist considerable iris deformation
and yield better results than the other two approaches. Therefore it makes iris
recognition system more robust to the external stimulus, such as illumination
variations.

How to deal with iris deformation problem has only been addressed by a few
literatures, and we think this issue hold great importance in iris recognition. In
the future, we will try to tackle the problem not only from iris model but also
the appearance of iris images. Hopefully it can deepen our understanding of iris
deformation and improves the recognition performance.
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