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ABSTRACT

In this paper, we propose a system identification approach

for group activity recognition in traffic surveillance. Statis-

tical shape theory is used to extract features, and then ARMA

(Autoregressive and Moving Average) is adopted for feature

learning and activity identification. Here only a few points,

instead of the complete trajectory of each object are used

to describe the dynamic information of group activity. And

ARMA is employed to learn activity sequences. The per-

formance of the proposed method is proved by experiments

on 570 video sequences, with the average recognition rate of

88% (compared with 81% of HMM). The extracted features

are invariant to zoom, pan and tilt, which is also proved in the

experiments.

Index Terms— Group Activity, Shape Theory, Landmark,

ARMA, Surveillance.

1. INTRODUCTION

Group activity analysis is an extremely challenging task be-

cause of the large number of objects and the degree of free-

dom of their motion. Moreover, multiple occlusions and clut-

ter occur in a crowded surveillance scene from a single cam-

era, and thus low level features are not robust. Correlated re-

search takes trajectories as low level features. To be general,

they are not scene invariant. To get a the feature representa-

tion method able to work irrespective of the camera location,

we adopt a solution base on shape theory [1].

Most of the prior work on activity learning is based on

the research of graphical models, such as DBN, HMM and

some extensions [2, ?, 3, 4]. However, the more objects are

considered, the more complex structure is constructed, and

hence, the performance of these solutions gets worse because

of low scalability. So the graphical model methods are fea-

sible only when the number of objects is small. Typically,

these methods require much priori knowledge, for example,

the complete trajectory data, the number of objects and so on.

When multiple occlusions and clutter occur, the information

required is difficult to provide and then these methods are in-

sufficient. So we try to develop a method using some discon-

nected points detected from the sequence. Compared with

graphical models, ARMA has lower computation complex-

ity in parameter estimation, and it can be used to characterize

Gaussian distribution. Thus we use the ARMA model to learn

the nature of the shape sequences.

The proposed method starts with the extraction of moving

landmark points in each frame of a suquence. Then a fixed

number of landmarks are resampled to represent the configu-

ration of group activity. In addition, the original shape config-

urations are transformed into a linear tangent space by shape

theory. Finally, ARMA model is used to capture the dynamics

of activity shape over large training data. The different group

activities could be recognized by the model parameters. More

details can be seen in section 2. Section 3 illustrates the ex-

periments with analysis. Section 4 concludes the paper. The

overall system architecture is illustrated in Figure 1.

Fig. 1. The flowchart of ARMA-based activity recognition.

2. GROUP ACTIVITY RECOGNITION WITH SHAPE
SEQUENCE AND ARMA

2.1. Theory of Shape Analysis

According to Kendall [6], shape is the geometrical informa-

tion that remains when location, scale and rotational effects

are filtered out from an object. In general, there are two kinds

of representations of shape, one is continuous, such as contour

and outline of object; the other is discrete, such as landmark.

Here we use landmarks, a finite number of ordered points, to

constitute a shape at each frame. The method begins by trans-
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lating the configuration matrix so that its centroid is located

at the origin:

yc = Cyraw, (1)

where C = Ik − 1
k1k1τ

k, 1k is the k × 1 vector of ones. yraw

is k × d configuration matrix for k points, and each point

is denoted by d-dimension vector; Also to remove the size

information, we scale yc by its Euclidean norm:

ycs =
yc

‖yc‖ =
Cyraw

‖Cyraw‖ (2)

Given reference pre-shape γ, we can normalize each shape

y into the same shape space by the rotation angle θ [6].

θ(yc, γ) = arg(y∗
cγ) (3)

y =
yc

‖yc‖ejθ(yc,γ) =
Cyraw

‖Cyraw‖ejθ(yc,γ) (4)

Formally, the shape space is the orbit shape and it is nonlin-

ear. So methods based on shape space are complex with bad

performance. Therefore the Procrustes tangent coordinates,

the linearization of shape space, is adopted [6] :

yT = [Ik − μμ∗]y = [Ik − μμ∗]
yc

‖yc‖ejθ(yc,γ) (5)

where μ is the Procrustes mean shape:

μ = arg inf
μ

Σd2
F (yi, μ) (6)

2.2. ARMA Model

To learn the variances of a shape sequence, a dynamical model

from actual data is constructed. Current literature shows that

the ARMA model has good performance in simulating the

change of time sequences in space [7, 8]. Give an ARMA as

defined by [9]:

{
x(t + 1) = Ax(t) + Ke(t)

y(t) = Cx(t) + e(t) (9)

where y(t) is the time series of tangent projections of shapes,

x(t) is the hidden state of model, e(t) is zero mean white

Gaussian noise process. A is the state transition matrix, C,

the output matrix and K, the Kalman gain matrix of the inno-

vation representation.

According to [10], we can use SVD ( Singular Value De-

composition) to obtain the closed-form parameter matrices of

ARMA model.

[y(1), y(2), ..., y(τ)] = UΣ−1V τ (10)

then

C = U, A = ΣV τD1V (V τD2V )−1Σ−1 (11)

in which

D1 =
[

0 0
Iτ−1 0

]
, D2 =

[
Iτ−1 0

0 0

]
(12)

Once model parameters are obtained, we use the principal

angles and their corresponding principal distances between

ARMA models for recognition. According to [11], the prin-

cipal angle θk are recursively defined as:

cos θk = max
a,b

|aτAτBb|
‖Aa‖2‖Bb‖2

=
|aτ

kAτBbk|
‖Aak‖2‖Bbk‖2

,

for k=1, 2 . . . q (13)

where a, b are the columns of parameter matrix A,B respec-

tively. Let M1 and M2 be ARMA models of order n. The

test sequence is identified as a predefined group activity, if

the Frobenius norm based distance dF is small enough :

dF (M1,M2)2 = 2
2n∑

k=1

sin2 θk (14)

3. EXPERIMENTAL ANALYSIS

In the wide-area surveillance scene, every object moves at

will and the group activity is irregular. For traffic scenes,

customary crosswalks and traffic rules constrain the group ac-

tivities. For example, right-and-left carriageways in the traf-

fic scene have distinct directions. In this paper, we take a

T-shaped intersection surveillance scene as an example and

analyze five kinds of group activities as show in Figure 2.

(No.1) (No.2) (No.3)

(No.4) (No.5)

Fig. 2. Group activities: (No.1), straightforward from south

to north; (No.2), straightforward from north to south; (No.3),

back turn; (No.4), left turn from south to west; (No.5), left

turn from west to north.

In our experiments, all images are 320×240 pixels in the

video sequence from a surveillance platform which consists

of sixteen fixed sensors and three PTZ cameras set around

our campus. There are 570 training sequences in our dataset,

including 90 straightforward from south to north cases, 90
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straightforward case from north to south cases, 150 cases of

turning from south to west, 120 cases of turning from west

to north and 120 back turn cases. Each sequence is about 60

frames in length. Since shape theory can scale data from vari-

ous views, three different views (standard view, zoomed view

and translated view) are respectively used for the detection of

different group activity.

3.1. Motion Detection and Low Level Feature Extraction

The most difficult problem in multi-objects tracking is how

to match the object correctly, especially in the case of light-

ing changes, repetitive motions, or long-term scene changes.

Therefore, landmark is introduced to represent the shape of

group activity without matching each object accurately.

In Figure 3, we show experimental scene and motion de-

(a) (b) (c)

(d) (e) (f)

Fig. 3. Experiment scene where (a) is standard view, camera

is zoomed and translated in (b) and (c) respectively. (d), (e)

and (f) are their corresponding motion detection results.

tection results from different views obtained by our platform.

Fig. 3(a) is the normal case, then we zoom in as shown in Fig.

3(b), translate the camera rightwards in Fig. 3(c). The red

parts in (a), (b) and (c) denote the static vehicles waiting for

left turn, so they are not detected in video. The correspond-

ing motion detection results are illustrated in Figure 3(d, e, f).

Note that detection algorithm is not the focus of this paper,

we just use it to obtain required observation data. Detailed

discussions can be found in [12]. The normalized data ob-

tained by shape theory are shown in Figure 5. In each figure

group, the first row demonstrates the sampled points in three

different views: standard view (left), zoomed view (middle)

and translated view (right). After the shape theory are used

to these original landmarks, their respective shape data are

shown in the second row.

3.2. Discussion on the Number of Landmark Sample Points

In our experiments, the locations of a group of vehicles are

taken as landmarks. We linearly interpolate the group activ-

ity shape, and then re-sample the interpolated shape to obtain

a predefined number of landmark points. Joining a number

of landmarks in a predefined orientation will form a curve,

which is used to represent the group activity (Figure 5). The

relationship between recognition rate and the different num-

ber of landmark points 64, 32, 24, 16 and 8 points are shown

in Figure 4. The recognition rate cease to rise when N > 32

Fig. 4. Results of recognition vs the number of landmarks.

in the case of straightforward, and the same thing occurs when

N > 24 in the case of turning back, turning from south to

west and turning from west to north. Although these can not

represent the full information of these trajectory shapes, the

recognition rate is still promising.

Table 1. The Number of Landmarks in Five Trained Group

Activities.
No. 1 No. 2 No. 3 No. 4 No. 5

Number 32 32 24 24 24

3.3. Comparison of ARMA, AR and HMM

HMM is popular in activity recognition because of its ef-

ficient parameter estimation algorithm and simple graphical

structure. In discrete and continuous HMMs, the observation

output is generally neither uniform nor Gaussian distributed,

but in a more complicated form. Moreover, the discrete hid-

den state in a HMM may not be appropriate for characteriz-

ing continuous variations of a group activity. Different from

HMMs, the distribution of an ARMA model is asymptoti-

cally Gaussian distributed. Concerning computational com-

plexity, the training cost of an HMM is o(N2T 2), where N
is the number of states in the HMM and T is the length of

the time series. The cost of the ARMA estimation algorithm

is o(m3T ), where m = max(p, q + 1). In general, HMMs

require more data for training, so that the HMM’s computa-

tional cost is usually higher than the ARMA model.

AR is also commonly used in modelling the time sequences.

However, the AR model only uses zeros to describe the de-

formation information which is quite insufficient while the
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Table 2. Activity Recognition Rates for Three Models.

No.1 No.2 No.3 No.4 No.5

AR 58% 63% 55% 57% 60%
ARMA 86% 92% 78% 88% 94%
HMM 81% 83% 80% 78% 82%

ARMA model uses both poles and zeros to characterize the

shape sequences, providing enough information for activity

analysis.

As shown in Table 2, HMM gets the promising recogni-

tion rates, and the performance of ARMA is comparatively

better than HMM, but the results of AR is the worst. ARMA

model is able to capture the dynamic shape deformation. Be-

cause of the inherent simplicity of AR, is not effective enough

to model the dynamics of group activities. The parameter ma-

trix C of ARMA resembles the observation probability ma-

trix of HMM, so it can handle the highly structured shape

sequence such as turning back.

4. CONCLUSION
Compared with existing work, the proposed method just sam-

ples the group activity curve, regardless of the complete tra-

jectory data of respective object, and thus weakens the con-

straints of multiple occlusions. Motion detection, instead of

tracking is enough for obtaining the required data. Moreover,

the low level feature extracted by shape theory is invariant to

camera zoom, pan and tilt. ARMA, as a linear parametric

model to bridge the low level motion information and high

level activity recognition, gets promising experiment results

in the proposed method.
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