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ABSTRACT features of four static distances in representative hurtan s

Gait has received much attention from researchers in the Vlhouettes o coarsely describe human gait. Similarly, Wang e

sion field due to its utility in walker identification. One dfa 2 [9] characterized walking gait via a vector of distances

key issues in gait recognition is how to extract discrimivet obtained by unwrapping the silhouette around its center of

shape features from 2D human silhouette images. This paperpalSS - Moreover, Kale et al. [4] utilized the outermost

deals with the problem of gait-based walker recognitiongsi widths of silhougttes fort.he description of pe_destriamewas
statistical shape features. First, we normalize walkéiss- Liu etal. [6] r_ehed on fnezg patterns to Qellneate the aign
ettes (to facilitate gait feature comparison) into a sqfama tures .Of wa_lklng human b(_amgs. In particular, Sarkar et al.
and use the orthogonal projections in the positive and negat .[5] built an |r_nporta|jt baselm_e_ platform_for the easy compar
diagonal directions to draw personal signatures contaimed 'S(])r;(;ffa);tlgre gar']ti rﬁtc Og::l%%?azgoi:tgrssét?enrg 1-6:2 featc(irjllili
gait patterns. Then principal component analysis (PCA) an ate the rpesearc?h of gvall?er recognition at night (F:)onsmjp' ri
linear discriminant analysis (LDA) are applied to reduce th 9 gnt,

dimensionality of original gait features and to improve thetsrgztét_agflj:get\g;f?nf‘gtig(‘;sn;%?t Z?tcferg r:ﬂiszma(rjnoar%/ trggjr: d
topological structure in the feature space. Finally, tlapgr 9 9 P

accomplishes the recognition of unknown gait featuresd)asematChmg'“ke scheme with the help of appearance featares i

. : . . 2D human silhouettes, since shape features are more impor-
on the nearest neighbor rule, with the discussion of theeffe tant than dvnamic ones from the long-term point of view
of distance metrics and scales on discriminating perfooman Y 9 P '

Experimental results justify the potential of our method. Ther_e fore, Itis cr|t|cgl_to extract useful gait featuresamh
developing gait recognition systems. However, feature ex-

Index Terms— Gait, PCA, LDA, shape, metric, scale traction involves a trial-and-error process and genetatigs
theoretic guidelines. In addition, existing work usually-n
1. INTRODUCTION glects two vital issues associated with gait recognitiois: d
tance metrics and scales. This motivates us to address the
Both governments and the public have paid great attention teroblem of gait-based walker recognition using shape featu
the issue of security over the past years. In particulaQth#  with the consideration of metrics and scales. From the per-
incident deepens the consensus of security enhancement. Sgective of walker recognition from video, this work is nece
this context, a variety of biometrics have been investigjatesary. The major contribution of this paper lies in the offigri
in an effort to better protect our society, including gaitth ©of a promising method to extract gait features.
refers to the person-specific moving styles. Gait-basecdmum In the following, we will introduce our method in Section
recognition is partially supported by the earlier psyclyatal 2. Then Section 3 provides experimental justification for ou

experiments [3]. approach. Finally, Section 4 concludes this paper.
In fact, many contributions have been made to this rapidly
developing domain. For instance, Niyogi and Adelson [7] 2. APPROACH

took the earliest initiative in recognizing walking peopbsed
on gait features. Additionally, Cunado et al. [2] used twoln addition to supplying human silhouette data, which can be
inter-linked pendulums to model the motion of human legsbtained by background subtraction, current gait database
and achieved the recognition of walking people using the dycomply with the assumption that surveillance cameras atie st
namics of angles in the simplified leg model. Instead of fol-or fixed and there exists only one single pedestrian in the
lowing structure from motion and dynamic cues for walkerscene of interest. Hence this paper will focus on silhouette
identification, Bobick and Johnson [1] employed the shapgostprocesing, feature description, dimension redugctiod

This work is partially supported by the National Basic Resedrogram CIaSSI_ﬂcatlon' The nontrlv.lal step OT postprocessing eens
of China (2004CB318110) and the National Natural Scienaenation of  the alignment of human silhouette images for the subsequent
China (60605014, 60332010, and 60335010). matching purpose. Then the objective of feature descriptio




of the classical PCA and LDA techniques in an effort to fur-

; ther reduce data redundancy. In brief, PCA can be regarded
@ (b)' © (@ as a criterion of minimizing information loss or reconstive
errors which can be mathematically expressed as

Fig. 1. Gait feature extraction. (a) Original silhouette. (b) Naiized min E|&-ax H% st WITW =1 (1)
silhouette. (c) Positive diagonal projection. (d) Negatiiagonal projection. We Rmxnw

where the transpose oV represents a linear transformation

. RSSO ) :
is to avoid the unnecessary redundancy in the raw silhouetf§2PPiNgz tou = Wz, & the reconstructed signal obtained

data, and this objective is further solidified by the stepief d 2 * = Wu t("‘g”;_the C‘?'“mr‘lf oW be':‘g f‘?as's)’ at”ft]wt "
mension reduction rooted on the linear optimization princi IS the expected dimension. 11 1S easy 1o Tigure out that the

ples. The following part will present more information abou columns of the opumgW not only should satisfy the eigen-
these steps. equation of the covariance matty, of x and but should also

correspond to the first,, largest eigenvalues ¢f,. This pa-

per takes the choice far,, that the ideah,, equals the mini-
mum number of the eigenvalues®f which at least “weigh”

In general, our method falls into the shape matching-lizee- @ 95% of the total weight ofr— the trace ofS,. On the
work. As a result, it is better to normalize raw human silhou-°ther hand, PCA actually does not makes full use of the in-
ettes of different sizes in the hope of removing the inconsisterrelationship among training data such as the intescas
tency in recognition results due to the resolution and humakfitra-class cues. This is the motivation behind the apptioa
position variation, regardless of the loss of personal jgiays ©f the LDA technique. The basic idea in LDA is to maximize
features (e.g., human height). More specifically, we aghievthe Euclidean distance between data in different clasdes (o
the normalization of silhouettes by means of two steps: 1ien simplified as the distance between distinct class cgnter
calculate the aspect ratibof each human silhouette; and 2) @hd minimize the Euclidean distance between the same class
resize the raw silhouette with preserved and translate the data. This aim can be concisely formulated as the optimiza-
resized silhouette in an x s imagel, to make its center of tion problem (2) in matrix terms:
gravity be the middle of, in the horizontal direction. Figure tr(VTSyV)

1(a)—(b) illustrate this process. vemax ., W

whereV is the needed transformation a§glandS,, are the
between-class and within-class scatter matrices, resphct
The choice of suitable gait features is the key to the suaifess The matrix traces of, andS,, gauge the between-class dis-
a gait recognition system; this paper resorts to the use-of agance and the within-class distance. A series of matrix com-
pearance features to characterize human gait. More phgciseputation reveals that the column vectors of the compiifed
each normalized silhouettg is projected in two orthogonal constitute the generalized eigenvectors betwggeand S,,.
directions: the positive diagon& and the negative on&'  |n a similar way to the use of,,, this paper takes account
shown in Fig. 1(b). Thus, each projection records a vectosf a 98% of the generalized “weight’—the sum of the gen-
of the valid number of human pixels in that projective direc-eralized eigenvalues—for the choice of. In a word, we
tion. We denote thé projection byz, and theN one byz,.  can obtain a relatively compact feature vegjoe VW 7z
Finally, the concatenation = (], z1)” € R™ of 2, and  through the combination ¥ andV’.

x,, fulfills the description of the gait pattern withify. In ad-

dition, Figure 1(c)—(d) describe our gait features. Itigtho 5 4 cJassification

pointing out the difference between Liu’'s frieze patterh [6

and ours: we focus on the cues in two diagonal directions anti order to lighten the computational load, this paper simpl

collectively employ them rather than the separate horiont fies the description of gait features in one video sequenee: w
and vertical projections. employ the average of the features to coarsely represent the

signature of the person within this gait sequence. Although
W andV are derived on the basis of the Euclidean-2 norm,
it is worthwhile to investigate the effect of different distce
The component features incertainly have correlation due to metrics on recognition accuracy. In this work, we just con-
the symmetry of human figures; this makes it necessary to resider four commonly used metricky, Lo, Lo, and the Ma-
move the correlation-induced redundancy:inThe fact that  halanobis metric; this paper denotes the Mahalanobis met-
linear methods to reduce dimensionality generally havetow ric by Ly, for the notational simplicity. Finally, our method
computational complexity and higher efficiency in compari-recognizes unknown gait features using the nearest neighbo
son with nonlinear techniques prompts us to take advantagiecision-making rule.

2.1. Silhouette Postprocessing

)

2.2. Feature Description

2.3. Dimension Reduction
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Table 1. Seven Experiments on the USF-NIST Gait Database with the
Gallery (G, A, R). 0./

Exp. Probé Difference , 08
A | (G A D71 View &
B (G, B, R)[41] Shoe
C | (G, B, D[] Shoe, View *
D (C, A, R)[70] Surface 0 50 100 150 200 250 50 100 150 200 250
E | (C, B, R)[44] Surface, Shoe ; ;
= (. A D[70] Surface, View (a) Normal vs. Normal (b) Normal vs. Fast
G (C, B, L)[44] | Surface, Shoe, View

Table 2. Recognition Accuracy Scores on the USF-NIST Gait Database
Algo.| A B C D E F G
[B] | 79% |66%)|56%)|29%|24%| 30%| 10% |
L1 | 97% | 78%)| 66%]| 23%|17%| 17%| 19% 0 100 150 200250
RAS| L2 | 99% |80%]|66%)|24%|19%|18%|17%
Loo | 82% | 73%)|46%|17%|14%]| 9% | 10%
Lam | 100%)| 80% | 66%| 29%| 24%| 24%| 24%

(c) Normal vs. Slow (d) Normal vs. Bag

Fig. 3. The Accuracy-versus-Scale curves on the CASIA Night Datase

of L; andLs lies in between that oby; andL,.. In addi-
tion, the accuracy response to scala Fig. 2(a)—(c) tends to

We experiment with the approach in the last section on tw(pe_sﬁabilized bepaus_e of the consistency in the appearance o
gait databases for the scrutiny of its performance. The tWJ)r"’“n.mg and testing silhouettes; the_ fluctuguon of theuaacy .
databases are the USF-NIST Gait Database [5] and the cAl F '9. 2(d)—(g)_ results from the inconsistent segmentatio
SIA Infrared Night Gait Dataset [8]. The use of these twohoise in probe sﬂhouette_s. Furthermore_, Table 2_presbetst
datasets is because the USF-NIST database provides a ba@és values correspondmg to the baseline algquthm [5]. and
line platform for an algorithmic comparison and the CASIA ® = 32. The results illustrate that our approach is promising.
dataset has the largest number of subjects in the night gait

aspect. In addition, we consider the variation of the noiznal 3.2. CASIA Night Gait Dataset

ing scales ranging from 1 to 255. The following will describe ) ] )
more details about these experiments. The CASIA dataset keeps a record of night gait from 153 in-

dividuals and takes into account four cases: walk normally,
walk fastly, walk slowly, and walk normally but with a bag.
More precisely, each subject has ten sequences of gait sam-

We choose the use of the pre-supplied human silhouettes fB#€S: four sequences for the normal walking case and two se-
the May-2001-No-Briefcase data, after considering the-comdUences for each of the remaining cases. As_far as this datase
putational burden involved in experiments. This data celle IS concerned, we use the collection of the first two normal-
tion consists of 74 people’ gait patterns and includes thre¥@/king sequences of each individual as the training dati an
walking covariate factors: viewpoint, footwear, and grdun th€ réemaining sequences as t.he testing data. Hence we per-
surface. Meanwhile, Table 1 lists seven experiments degign form four kinds of experiments: normal-versus-normalmak
by Sarkar et al. [5] with regard to this database. versus-fast, normal-versus-slow, and normal-versusthéagy
Figure 2 depicts the curve of recognition accuracy scoreRaPEer repeats the recognition experiment for each walking
(RAS) that vary with the normalization scale It can be CaS€ two times, since there have two testing sequences for
seen from Fig. 2 that the accuracy of recognition at extrgmel€ach case, and adopts the average of the two times's results
small scales is low largely due to the limited, confusioprer  © éPort the performance. Figure 3 displays the accuracy-
features, but the nonzero scores at small scales refleciuhat Versus-scale curves in the four experiments. Apart from a
gait description has certain discriminability: in genetie  Similar conclusion to that drawn from Fig. 2, we can also
L metric has the best performance thanks to its second-ord@Ptain from Fig. 3 that the., metric can bring relatively
homoscedasticity and tHe,. metric produces the lowest ac- MOre stable performance. The accuracy variation in Fig) 3(d

curacy owing to its winner-take-all metric; the performanc Should be attributed to the bag-induced appearance naise. F
thermore, Figure 4 shows cumulative match scores (CMS) in

1The value in the bracket indicates the number of subjectssirteist. the case of = 32 for ranks up t20 and justifies once again

3. EXPERIMENTS

3.1. USF-NIST Gait Database




(a) Exp. A (b) Exp. B

(c) Exp. C (d) Exp. D

(e) Exp. E (f) Exp. F

(9) Exp. G

Fig. 2. The Accuracy-versus-Scale curves on the USF-NIST Gaitlizata

offering of a promising method to extract gait features.
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(c) Normal vs. Slow (d) Normal vs. Bag [4]

Fig. 4. The cumulative matching scores on the CASIA Night Gait Dettas

(5]

that the performance of our approach is promising, particu-
larly when having no severe appearance changes. [6]

4. CONCLUSION [7]
This paper has addressed the problem of gait recogniticadbas
on appearance features in human silhouettes, with cornsider
ing the issues of distance metrics and scales. Experimental
results indicate that the Mahalanobis distance can praithece
best recognition performance, that the increase in scales d
not always brings the corresponding rise of recognition acf9]
curacy, and that the approach proposed in this work presents
encouraging performance. Our major contribution lies & th
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