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Abstract. Most of gait recognition algorithms involve walking cycle es-
timation to accomplish signature matching. However, we may be plagued
by two cycle-related issues when developing real-time gait-based walker
recognition systems. One is accurate cycle evaluation, which is compu-
tation intensive, and the other is the inconvenient acquisition of long
continuous sequences of gait patterns, which are essential to the esti-
mation of gait cycles. These drive us to address the problem of distant
walker recognition from another view toward gait, in the hope of detour-
ing the step of gait cycle estimation. This paper proposes a new gait
representation, called normalized dual-diagonal projections (NDDP), to
characterize walker signatures and employs a normal distribution to ap-
proximately describe the variation of each subject’s gait signatures in the
statistical sense. We achieve the recognition of unknown gait features in
a simplified Bayes framework after reducing the dimension of raw gait
signatures based on linear subspace projections. Extensive experiments
demonstrate that our method is effective and promising.
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1 Introduction

To some extent, gait characterizes personal moving styles, e.g., walking, run-
ning, and jumping. There have been many efforts to perform gait-based walker
recognition. In brief, the prior work pertaining to gait recognition generally takes
three steps to identify walkers: 1) localize moving people in video or image se-
quences; 2) estimate gait cycles and pinpoint the walking phase; and 3) recognize
unknown pedestrians based on the time-aligned features extracted from images.

But we are sometimes confronted with two unfavorable situations when de-
veloping real-time gait recognition systems. First, the accurate estimation of gait
cycles often devours much computational resource and does not adapt well to
the requirement of online recognition. Second, the inconvenient acquisition of
continuous gait sequences of multiple cycles makes it impractical to evaluate
gait cycles; gait motion can dramatically vary after a long time and is just ap-
proximately cyclic in the short term. The two facts plunge us into a dilemma
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as to whether to proceed with the estimation of cycles of gait sequences or not.
It is this dilemma that prompts us to reexamine gait recognition methods. This
paper deals with the problem of walking people recognition at a distance. Rather
than following the conventional route, we start from a statistical view on gait
(just for recognition purpose), in the hope of bypassing the step of gait cycle
estimation. From the perspective of security, this work is necessary.

The rest of this paper is as follows. Section 2 introduces related work. Then,
we discuss technical details in Section 3 and justify our method in Section 4.
Finally, Section 5 concludes this paper.

2 Related Work

Prior methods for gait recognition can be roughly clustered into two categories:
the model-based category and the image appearance-based category. For exam-
ple, Cunado et al. [3] used two inter-connected pendulums to model the kinemat-
ics of human legs and extracted magnitude and phase features in the frequency
domain to differentiate subjects. Urtasun and Fua [12] further employed angle
features in a 3D human physical model to describe the signatures of walking
people. As opposed to the model-based methods, the work in [1, 7, 15] directly
extracted different distance features from binary silhouette images for walker
identification. Moreover, the research in [5, 8, 14] simplified the description of
binary gait silhouettes within a cycle through averaging them and achieved sat-
isfactory results. In particular, Sarkar et al. [10] established a baseline daytime
gait database in an attempt to benchmark evaluation of gait recognition algo-
rithms, and Tan et al. [11] created a large infrared night gait dataset in an effort
to narrow the gap between daytime walker recognition and nighttime gait identi-
fication. However, it is still challenging to resolve the problems of how to balance
the particularity of human structural models against the generality and how to
extend the discriminative ability of appearance features across different harsh
conditions.

The diligent efforts to shed light on cognitive principles deepen the insight
into human perception of movement patterns. For instance, the body-inversion
effect [9] showed that the perception of human body might be global. Surpris-
ingly, a hemianopic patient AL [2] who lost the ability to recognize forms from
motion could detect motion and distinguish static shape stimulus. Moreover,
Downing et al. [4] figured out a region (EBA) in the lateral occipitotemporal cor-
tex which focuses on the visual perception of appearance of human bodies (except
face) and is not related to motion cues. Later, Jacobs and Pinto [6] showed that
visual experience had a vital impact on identity perception, though disagreeing
on the use of walking patterns for recognition. Meanwhile, Veeraraghavan et al.
[13] concluded that shape cues play a more critical role in automatic gait recog-
nition than those from motion. These findings reveal that the only use of global
shape (or appearance) cues can achieve the human-recognition purpose; it seems
that dynamic attributes are not suitable for discriminating walkers, since they
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Fig. 1. NDDP illustration. (a) Normalized silhouette. (b) Positive diagonal direction.
(c) Negative diagonal direction. (d) Curve for (b). (e) Curve for (c). (f) Curve concate-
nating (d) and (e).

are not reliable from the long-term perspective. This makes us rethink gait to
form an alternative view on gait recognition.

3 Technical Details

In this paper, we consider human gait as a stochastic realization of one’s static
stances (or figures). It should be pointed out that we have employed this view
for gait recognition in the form of equivalence constraints but did not provide
extensive experiments to support this view. On the other hand, this paper uses
this gait view in the Bayesian framework based on another gait representation, in
the hope of justifying our view for gait recognition. Although this idea ignores the
dynamic details in the human movement from the biomechanical point of view, it
still grasps the more critical cues provided by human shapes for the recognition
purpose. Assume that we have acquired human silhouettes. Then this paper will
focus on gait representation, dimension reduction, and classification.

3.1 Gait Representation

This paper first normalizes each silhouette image to the same size of 32 × 32.
Then, we project the size-normalized silhouette in the positive and negative diag-
onal directions, respectively. Meanwhile, it is easy to evaluate for each of the two
directions a maximum value which indicates the maximal number of foreground
pixels along that direction in this frame. Furthermore, the two maximums are
used to normalize the respective projections. Finally, we concatenate the two
normalized projections to represent human gait in the frame and refer to this
representation as NDDP. It should be noted that a similar unnormalized diag-
onal representation is also able to describe human gait but is beyond the scope
of this paper. Figure 1 illustrates the NDDP representation. The NDDP differs
from [7] in that we are concerned with the relative number of foreground pixels
in the dual diagonal directions whereas the authors in [7] are interested in the
coarse number of foreground pixels in the single horizontal direction.

3.2 Dimension Reduction

We employ principal component analysis (PCA) and linear discriminant analysis
(LDA) to achieve dimension reduction. The PCA projection matrix U ∈ R

n×d
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can be derived from an intuitive, clear-cut geometric view. That is, we expect to
search for a projection onto a subspace spanned by a group of orthonormal basis
so that the transformed variables have as great the variance in each coordinate
axis as possible—informative—and are implicitly uncorrelated. Suppose that U

has the form U = [u1 . . . ud] and that we have found j − 1 axes (u1, . . . , uj−1).
Now the aim is to seek the j-th axis uj (j ≤ d). This problem can be formulated
as (1):

max
uj∈Rn

var(uT
j x) s.t. uT

j uj = 1, uT
k uj = 0 (k = 1, 2, · · · , j − 1) (1)

where x ∈ R
n is the initial NDDP vector. It is trivial to prove that the optimal

u1, . . . , ud should correspond to the top d largest eigenvalues of the covariance
(or correlation) matrix of x. This paper chooses d to be the minimum number
of components of x which at least account for the proportion 95% of the total
variation of x. Additionally, the LDA projection V can be expressed as the
problem (2):

max
V

tr(V T SY
B V )

tr(V T SY
W V )

(2)

where SY
B and SY

W are inter- and intra-class scatter matrices, respectively. It is
easy to obtain that the columns of V constitute the generalized eigenvectors of
SY

B and SY
W . Similarly, we consider a fraction 98% of the generalized “variation”

in an attempt to further reduce the dimension of gait features. Finally, we can
gain a composition P = UT V T which directly projects x in the original space
X to y = Px in the dimension-reduced space Y .

3.3 Classification

Unlike the only mean description of gait sequences, we exploit a normal dis-
tribution xi ∼ N(µi, Σi), i = 1, 2, . . . , nc, where nc is the number of sub-
jects in the gait database, to express the i-th person’s gait signatures with
regard to our gait view. Then the transformed vector yi has the distribution
yi ∼ N(Pµi, PΣiP

T ). Assume that xs
t (t = 1, 2, . . . , M) is the raw feature vec-

tor of an unknown gait sequence S at the time t. In theory, we can recognize
the identity in a brute force manner—combining every identified result for the
sequence of silhouettes. However, this strategy involves huge computational re-
source. Instead, this paper employs the average x̄s of feature vectors xs

t in S

to describe the unknown gait sequence S for the computational simplicity. The
next is to map x̄s to ȳs with the P . In addition, our method incorporates the
second-order moment (covariance) into the distance measure in a quasi-Bayesian
fashion: d∗i = (ȳu − Pµi)

T (PΣiP
T )−1(ȳu − Pµi). Finally, the nearest distance

rule is used to judge the identity of the unknown walker in the gait sequence S.

4 Experiments

In order to validate the proposed method, we perform walker-recognizing exper-
iments on three gait databases in an increasing order of the number of subjects:
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Fig. 2. Sample gait images in the CMU Mobo Gait Database

Table 1. Five Experiments on the CMU Mobo Gait Database

Exp. Gallery Probe Remarks

A Slow Slow Within-condition

B Fast Fast Within-condition

C Ball Ball Within-condition

D Slow Fast Across-condition

E Fast Slow Across-condition

CMU Mobo Database [1], USF-NIST Gait Database [10], and CASIA Infrared
Night Gait Dataset [11]. Meanwhile, we employ cumulative match score (CMS)
[10] to assess recognition performance. Here the CMS value at rank k serves
as an indicator of the fraction of probes whose leading k matches must include
their real identities. In addition to the statistical estimation for Σi, our algorithm
also replaces Σi with the global covariance matrix Σ estimated from training
data for the computational convenience. We denote by DG the distance measure
which uses the plain estimates of Σi and by DM the measure which utilizes the
substitution of Σ for Σi. The following will give more experimental details.

4.1 CMU Mobo Gait Database

This database comprises gait sequences from 25 subjects and four kinds of walk-
ing patterns: slow walking, fast walking, slow walking at a certain slope, and
slow walking with a ball. Figure 2 shows four sample gait images in the Mobo
database. Five experiments designed for this database [7] are listed in Table 1.
Table 2 presents the rank 1 performance of our approach and another two in-
fluential methods [7, 13]. We can see from Table 2 that our method can produce
near 100 percent recognition rate for the 25 subjects when the training and test-
ing data share the same moving attributes, that across-condition recognition is
more difficult than the recognition in the within-condition case, and that our
approach outperforms [7] and is conservatively comparable to [13] just using a
simple model, despite neglect of dynamic cues. Furthermore, Figure 3 depicts the
CMS curves of our method on this database. The CMS values at least illustrate
the potential of our approach in the identification mode.
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Table 2. Comparison of the Rank 1 Performance on the Mobo Gait Database

A B C D E

HMM[7] 72% 68% 92% 32% 56%

SC[13] 100% 100% 92% 80% 84%

Ours(DG) 100% 100% 96% 88% 80%

Ours(DM ) 100% 100% 96% 88% 80%

2 4 6 8 10
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Rank

C
M

S

Exp. A
Exp. B
Exp. C
Exp. D
Exp. E

(a) CMS curve of DG

2 4 6 8 10
0.8

0.82

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

Rank
C

M
S

Exp. A
Exp. B
Exp. C
Exp. D
Exp. E

(b) CMS curve of DM

Fig. 3. CMS curves of our method on the CMU Mobo Gait Database

4.2 USF-NIST Gait Database

We use the precomputed silhouettes for the May-2001-No-Briefcase dataset in
the USF-NIST Gait Database [10]. The dataset used includes 74 individuals
and considers the conditions across viewpoint, footwear, and ground surface.
Figure 4 displays four example images in the USF-NIST database. Table 3 lists
seven challenging experiments [10] on this dataset. Moreover, Table 4 compares
our method with some well-known approaches [1, 7, 10, 15] in the literature.

Fig. 4. Sample gait images in the USF-NIST Gait Database

We can see from Table 4 that our model can produce a recognition rate close
to 100 percent in the concurrent gait case (Exp. A) and that in the presence
of disturbances on silhouette segmenting, the performance of our model begins
to degrade as well as other algorithms’ (this is an intrinsic flaw of appearance-
based gait recognition algorithms). Moreover, our method is competitive with or
comparable to the noted approaches on this gait database, in terms of both rank
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Table 3. Seven Challenging Experiments on the USF-NIST Gait Database

Exp. Probe1 Difference

A (G, A, L)[71] View

B (G, B, R)[41] Shoe

C (G, B, L)[41] Shoe,View

D (C, A, R)[70] Surface

E (C, B, R)[44] Surface, Shoe

F (C, A, L)[70] Surface, View

G (C, B, L)[44] Surface, Shoe, View

Table 4. Comparison of Recognition Performance on the USF-NIST Gait Database

Algo. A B C D E F G

CMU [1] 87% 81% 66% 21% 19% 27% 23%
UMD [7] 91% 76% 65% 25% 29% 24% 15%
USF [10] 79% 66% 56% 29% 24% 30% 10%

Rank 1 NLPR [15] 70% 59% 51% 34% 21% 27% 14%
Ours(DG) 99% 83% 71% 20% 17% 14% 12%
Ours(DM ) 100% 83% 68% 32% 24% 30% 31%

CMU [1] 100% 90% 83% 59% 50% 53% 43%
UMD [7] 100% 81% 76% 61% 39% 46% 33%
USF [10] 96% 80% 76% 61% 24% 45% 33%

Rank 5 NLPR [15] 93% 83% 71% 64% 45% 39% 26%
Ours(DG) 100% 90% 90% 82% 79% 76% 74%
Ours(DM ) 100% 93% 93% 80% 83% 79% 74%

1 and rank 5 values. In particular, our method has a much greater acceleration in
CMS values. These not only exemplify the promising usefulness of our approach
and but also indirectly give an experimental support for that our view on gait
recognition is to some extent reasonable.

4.3 CASIA Infrared Night Gait Dataset

The previous two databases pay more attention to daytime gait patterns. Hence
this paper employs the CASIA Infrared Night Gait Dataset [11] to diversify the
gait recognition experiments. This dataset consists of 153 subjects’ night gait
sequences and allows for four walking cases: normal walking, slow walking, fast
walking, and normal walking with a bag. Figure 5 illustrates sample night gait
in the CASIA dataset. Table 5 presents four experiments on this dataset [11].
It should be noted that we use the entire gait sequences in this data collection,
rather than a fraction of the data. Figure 6 shows CMS curves of our method
for ranks up to 20.

We can notice from Fig. 6 that Exp. A has the best performance (almost
100% recognition rates), due to the similarity in walking attributes between

1 The value in the bracket indicates the number of subjects in the test.
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Fig. 5. Sample gait images in the CASIA Infrared Night Gait Dataset

Table 5. Four experiments on the CASIA Infrared Night Gait Dataset

Exp. Gallery Probe #Gallery Seq. #Probe Seq.

A Normal Normal 459 153

B Normal Fast 459 306

C Normal Slow 459 306

D Normal Bag 459 306

training and testing data. In addition, the changes in walking pace to some
degree decline recognition accuracy largely because of the drastic departure of
the means of feature vectors in some testing sequences from their corresponding
training ones. Appearance variation can dramatically affect the precision of our
recognition results; however, appearance-robust gait recognition is still not a
well-resolved problem in the gait field. Nevertheless, the results favor the efficacy
of our method with reference to the number of the subjects.
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Fig. 6. CMS curves of our method on the CASIA Night Gait Dataset

4.4 Discussions

In general, the measure d∗i does not satisfy the distance definition and just serves
as a simplified Bayesian classifier for the computational simplicity. Assuming
that the prior distribution is uniform and that the volumes of eigenspaces of
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the subjects are equal (i.e., |Σi| have the same value), we can obtain the DG

measure. Similarly, the much stronger assumption that all Σi are the same (ho-
moscedastic) brings the DM measure. The results indicate that both measures
are sensible.

The aim of gait cycle estimation is to facilitate feature matching. As opposed
to the conventional route, we make full use of features in static 2D shapes by
combining the first- and second-order statistics to recognize walkers. A more
promising scheme is to integrate posture cues into our method for recognition
elaboration on a stance scale.

5 Conclusions

This paper has dealt with the problem of walker recognition in a simplified
Bayesian framework. Experimental results show that our method is superior or
comparable to the prior cycle-based algorithms. Our contribution is two-fold:
One is that we propose the NDDP to characterize human gait patterns, and
the other is that we explicitly incorporate second-order statistical cues into gait
recognition and obtain an encouraging performance.

Acknowledgments This work is funded by the National Natural Science Foun-
dation of China (Grant No. 60605014, 60332010, and 60335010), the National
Basic Research Program of China (Grant No. 2004CB318110), China Interna-
tional Science and Technology Cooperation (Grant No. 2004DFA06900), and the
CASIA Innovation Fund for Young Scientists.

References

1. Collins, R., Gross, R., Shi, J.: Silhouette-based human identification from body
shape and gait. In: Proc. Automatic Face and Gesture Recognition. (2002) 366–371

2. Cowey, A., Vaina, L.M.: Blindness to form from motion despite intact static form
perception and motion detection. Neuropsychologia 38(5) (2000) 566–578

3. Cunado, D., Nixon, M., Carter, J.: Automatic extraction and description of human
gait model for recognition purposes. CVIU 90(1) (2003) 1–41

4. Downing, P.E., Jiang, Y., Shuman, M., Kanwisher, N.: A cortical area selective
for visual processing of the human body. Science 293(5539) (2001) 2470–2473

5. Han, J., Bhanu, B.: Statistical feature fusion for gait-based human recognition. In:
Proc. CVPR. (2004)

6. Jacobs, A., Pinto, J.: Experience, context and the visual perception of human
movement. Journal of Experimental Psychology: Human Perception and Perfor-
mance 30(5) (2004) 822–835

7. Kale, A., Sundaresan, A., Rajagopalan, A., Cuntoor, N., RoyChowdhury, A.,
Krueger, V.: Identification of humans using gait. IEEE Trans. Image Process-
ing 13(9) (2004) 1163–1173

8. Liu, Z., Sarkar, S.: Simplest representation yet for gait recognition: Averaged
silhouette. In: Proc. ICPR. (2004)



10 D. Tan, S. Yu, K. Huang, and T. Tan

9. Reed, C.L., Stone, V.E., Bozova, S., Tanaka, J.: The body-inversion effect. Psy-
chological Science 14(4) (2003) 302–308

10. Sarkar, S., Philips, P., Liu, Z., Vega, I., Grother, P., Bowyer, K.: The human
gait challenge problem: data sets, performance and analysis. PAMI 27(2) (2005)
162–177

11. Tan, D., Huang, K., Yu, S., Tan, T.: Efficient night gait recognition based on
template matching. In: Proc. ICPR. (2006) 1000–1003

12. Urtasun, R., Fua, P.: 3d tracking for gait characterization and recognition. In:
Proc. Automatic Face and Gesture Recognition. (2004) 17–22

13. Veeraraghavan, A., Roy-Chowdhury, A., Chellappa, R.: Matching shape sequences
in video with applications in human movement analysis. PAMI 27(12) (2005)
1896–1909

14. Veres, G., Gordon, L., Carter, J., Nixon, M.: What image information is important
in silhouette-based gait recognition? In: Proc. CVPR. (2004)

15. Wang, L., Tan, T., Hu, W., Ning, H.: Silhouette analysis-based gait recognition
for human identification. PAMI 25(12) (2003) 1505–1518


