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Abstract

Gait is a promising biometric cue which can facilitate
the recognition of human beings, particularly when other
biometrics are unavailable. Existing work for gait recogni-
tion, however, lays more emphasis on the problem of day-
time walker recognition and overlooks the significance of
walker recognition at night. This paper deals with the prob-
lem of recognizing nighttime walkers. We take advantage
of infrared gait patterns to accomplish this task: 1) Walker
detection is improved using intensity compensation-based
background subtraction; 2) pseudoshape-basedfeatures are
proposed to describe gait patterns; 3) the dimension of gait
features is reduced through the principal component anal-
ysis (PCA) and linear discriminant analysis (LDA) tech-
niques; 4) temporal cues are exploited in the form of the
relevant component analysis (RCA) learning; 5) the near-
est neighbor classifier is used to recognize unknown gait.
Experimental results justify the effectiveness of our method
and show that our method has an encouraging potential for
the application in surveillance systems.

1. Introduction

Much emphasis has been placed on the importance of
security over the past years, especially after the 9.11 attack.
In this context, gait is gaining more and more attention not
only from academic researchers, but also from industrial
practitioners, though it is still in its infancy. Human gait
carries a personal style in which one person moves. The
most critical advantage of gait over conventional biometrics
(such as face, iris, and fingerprint) lies in its perceivability
at a long distance. The drawback of gait resides in its possi-
ble change in the motion style after a long-time period due
to its behavioral attribute, and this poses a great challenge
for robust gait recognition algorithms. The work by Murray
et al. [15] appeared to give a support for the uniqueness of
gait to individuals. Later, Cutting and Kozlowski [6] found
out that people have the ability to recognize their friends
using motion cues. The evidence inspires researchers in the

computer vision field to leverage gait for automatic walker
recognition. It is this huge potential in gait that drives a
great deal of work on intelligent gait recognition in an ef-
fort to strengthen our security level.

But we can see from a careful review of the past work
that there is still a lack of research on gait-based walker
recognition at night. In other words, night gait recogni-
tion has not been sufficiently studied in the literature. On
the other hand, night surveillance should be an indispens-
able component for an intelligent visual surveillance sys-
tem. This necessitates the investigation of the night walker
recognition issue. In addition, the previous finding natu-
rally reflects the importance and necessity of this work both
from the perspective of gait recognition and from the point
of view of night surveillance. We use the CASIA Infrared
Night Gait Dataset [20] to facilitate this research. More-
over, this work is more systematic than Tan er al.’s [20]
in that we recognize all the subjects in the dataset, rather
than a fraction of walkers. First, we preprocess each in-
coming video frame to reduce as much the effect of halo
and dynamic gain on detection results as possible. Then,
background subtraction is applied to localize moving peo-
ple, with fusing motion cues derived from pairwise consec-
utive frames. Additionally, this paper proposes a gait rep-
resentation, known as normalized pseudo- height and width
(NPHW), to characterize walker signatures. Moreover, we
employ informative linear subspace projections to reduce
the dimension of raw gait features and combine temporal
cues within gait in a machine learning-based form. Finally,
the recognition of unknown gait features is accomplished
using nearest neighbor-based decision making.

The remainder of this paper is as follows. Section 2 gives
a review of related work. Described in Section 3 is our
method. Then we justify the effectiveness of our method
in Section 4. Finally, Section 5 concludes this paper.

2. Related Work

Modern gait recognition stems from the pioneering ex-
periments by Niyogi and Adelson [16]. Prior methods for
gait recognition can be generally grouped into two cate-



gories: one is based on structural models and the other on
appearance features. Model-based methods are less sensi-
tive to viewpoint variation than appearance-based ones, yet
at the price of intensive computation. Choosing whether to
use model approaches or appearance ones depends on ap-
plications.

In general, model-based work begins with a simplified
structural model (2D or 3D) that may incorporate motion
constraints. Then, salient features are extracted from video
images which can be used to fit parameters of the structural
model. Finally, the parameters produce gait signatures in a
direct or indirect manner which help with the recognition of
unknown walkers. For example, Niyogi and Adelson [16]
employed a skeleton model to characterize the structure of
human beings and fulfilled the recognition with the aid of
four angles in the skeleton model. In addition, the work [5]
exploited two connected pendulums to describe the move-
ment of human legs and discriminated individuals by means
of the Fourier coefficients within the range of the low fre-
quency band. Later, Urtasun and Fua [22] utilized a vector
of angles in a 3D model to differentiate gait patterns. It is
worthwhile to point out that as far as human structural mod-
els are concerned, there is no general guideline to make a
reasonable compromise between generality and specificity.

On the contrary, appearance-based approaches achieve
gait recognition through the direct use of conspicuous fea-
tures in each video frame. For instance, Kale er al. [12]
made use of the vector of the outermost widths of binary hu-
man silhouettes to distinguish gait patterns from unknown
walkers, whereas Bobick and Johnson [2] made a distinc-
tion between gait patterns based on the static parameters in
the human body. In addition, Collins et al. [3] took advan-
tage of four-key-frame-based template matching to recog-
nize unknown gait. Furthermore, Han and Bhanu [9] ob-
tained a progressive identification performance using the
GEI description. Moreover, Tao et al. [21] explored the use
of tensor data expression to recognize the carrying gait. In
particular, Sarkar et al. [18] established a large daytime gait
dataset for the gait recognition community which was ac-
companied by a baseline algorithm. This work made an at-
tempt to provide a benchmark for evaluation of gait recogni-
tion algorithms, though its algorithm is somewhat time con-
suming. However, it is imperative to solve the problem of
how to generalize the discriminative power of appearance
features across different conditions. As well as that, one
of the bottlenecks of current gait recognition algorithms is
pedestrian detection with good robustness.

Fortunately, infrared imaging provides a promising
prospect for light-sensitive detection algorithms on account
of its light irrelevance and shadow immunity, especially
with the maturity of the technology in infrared imaging and
the decrease of the cost of infrared imaging devices. For
example, Davis and Sharma [7] dealt with the problem of

robust pedestrian detection based on univariate Gaussian
background models, with special attention paid to thermal
halo effect. In addition, Han and Bhanu [10] discussed the
problem of recognizing human activity in thermal infrared
images. More recently, Yin and Collins [24] built on motion
history images to localize moving objects in thermal video
sequences. In particular, Tan ef al. [20] made a preliminary
effort to recognize night gait in thermal infrared videos. It
should be pointed out that much of prior work for object
detection in infrared imagery ignores halo effect, polarity
change, and dynamic gains which have a nonnegligible im-
pact on detection results. Nevertheless, these attempts do
actually help attract more and more researchers to join the
alliance which hopes to detect, track, and recognize objects
beyond the visible spectrum.

On the other hand, advances in psychology, neuroimag-
ing, and computer vision present some evidence for the via-
bility of detouring the gait cycle estimation step in the con-
ventional route toward automated gait recognition. First of
all, recent studies in experimental psychology found out that
visual experience has a significant impact on identity per-
ception [11]. Then, the body-inversion effect [17] in cog-
nitive psychology indicates that the perception of human
body may proceed configurally or globally. More surpris-
ingly, a hemianopic patient [4] who suffered from the in-
ability to recognize forms from motion cues could detect
motion and discriminate static shape stimulus. Moreover,
Downing et al. [8] discovered a region in the lateral occip-
itotemporal cortex which is category specific to the visual
perception of appearance of human bodies (apart from face)
and is insensitive to motion cues. Furthermore, the work
[23] concluded that shape cues play a more critical role in
gait recognition than those provided by motion information.
These findings inspire us to form a new gait view: It is not
motion but appearance (shape) that dominates gait recogni-
tion, and each human gait is a stochastic realization of one’s
stances. Hence, we speculate based on the statistics (visual
experience) that for one fixed viewpoint, each binary hu-
man silhouette is a random realization for 2D projections
of gait sequences. This view induces the notion of equiva-
lence constraints (two samples come from the same class)
in machine learning, which makes it natural to incorporate
the RCA learning [1] into gait recognition. The benefit of
this view is that it can circumvent the step of estimating gait
cycles.

3. Method

Our method is a bottom-up procedure. This algorithm
comprises six modules: preprocessing, detection, tracking,
gait representation, subspace projection, and classification.
The role of the preprocessing module is in reducing as much
the influence of external disturbances on object detection as
possible. Then the detection module is responsible for lo-



Figure 1. Three regions having no severe thermal variation.

calizing walkers which provides significant cues for people
tracking. In addition, the gait representation module serves
as extracting simple yet informative gait features. Further-
more, the purpose of subspace projection is to reduce data
redundancy and computation load as well as to enhance
the separability of data. Finally, the classification module
achieves the recognition of unknown gait based on the near-
est neighbor decision rule. The following will give a more
detailed description of each module in our algorithm.

3.1. Preprocessing

A good preprocessing module can greatly facilitate the
subsequent detection. But most of prior work pertaining to
object detection in the infrared spectrum usually ignored the
problem of dynamic gain in thermal infrared imagery which
can result in unnecessary intensity fluctuation and noisy (or
erroneous) cues in a vicious circle. Our method utilizes in-
tensity compensation scheme to weaken the disturbance of
dynamic gain.

Here we assume that there does not exist abrupt changes
in thermal radiation over short time durations in some scene
regions. This assumption is reasonable, since temperature
change must be gradually progressive. First of all, the
preprocessing module pinpoints the regions without severe
thermal variation over short time intervals. Currently this
step is accomplished in an interactive way: We manually
specify these regions through mouse clicking in the video
window. The reason for the use of the manual mode is to
simplify computation in view of the limited computational
resources. There are three regions (R, R, and R3) which
are regarded as not having great thermal variation, as shown
in Figure 1. At the same time, we also use the background
image Ip as a reference image I, which will benchmark
compensation and can be updated in a weighted fashion un-
til 20 frames. For our experiments, image averaging can ba-
sically produce acceptable background images. A practical
surveillance system can attempt to use the multiple Gaus-
sian models (e.g., [19]) to more flexibly characterize the
dynamical background. It should be noted that the regions
remain the same for all the thermal video sequences. Then,
the module applies Gaussian filtering to each incoming im-

Algorithm 1 Preprocessing

1. I; = I; x K4 where the symbols “x” and “K,” mean the
convolution and a Gaussian kernel, respectively.

2. Ciy = NL >
(z,y)€ R;
where “M” and “N,” represent the numbers of the regions
without severe thermal variation and the pixels in R;, respec-

tively.

Li(z,y) — Ir(z,y) (1 = 1,2,..., M)

M

3. Ci= & 3 Cu.
=1

4. Ii(z,y) «— Ii(z,y) — C;.

age I; in an attempt to remove irrelevant random noise. In
addition, we calculate an average intensity difference C; ;
for each pinpointed region in between the new image [; and
the reference image I,.. Finally, the average of the inten-
sity differences is used to compensate the new image [y, as
indicated in Step 4 of Algorithm 1.

3.2. Detection and Tracking

Object detection plays an important role in intelligent vi-
sual systems due to its backbone function at later stages of
video analysis. This paper takes advantage of background
subtraction-based walker localization similar to the work by
Davis and Sharma [7], in combination with motion cues and
geometric constraints. But our method differs from [7] in
that we employ simple image operation to eliminate halo ef-
fect rather than complex (and time-consuming) image pro-
cessing techniques.

In particular, we exploit the frame difference between
two consecutive video frames (after intensity compensa-
tion) to define a coarse detection region that can to some
degree remove noise. Then we compute an absolute dif-
ference image and a relative difference image between the
current frame and the background image. Finally, these two
difference images are combined to refine the detected re-
gion by virtue of image logical operations, in conjunction
with geometric constraints in human bodies (distances be-
tween body parts). Algorithm 2 gives a description of this
procedure. At the same time, Figure 2 illustrates related de-
tection results. It can be seen from Figure 2 that histogram
equalization brings much noise into images, in spite of bet-
ter image contrast, and that our algorithm can produce sat-
isfactory results, at least on this dataset. It is worth pointing
out that we can further apply morphological filtering to re-
move small holes in binary silhouettes. However, unlike
the requirement of [12] for silhouettes, in our gait repre-
sentation, this step is optional. In addition, tracking can be
readily completed by nearest neighbor rule because of this
simplified case—one walking person in the scenario.



Algorithm 2 Algorithm for walker detection

Algorithm 3 Gait Representation

L. FDy(z,y) = [Ii(z,y) — Li—1(z, y)|.

255 FDi(z,y) > Ty

0 otherwise
where T}, is a threshold.

2. FD¢(z,y) =

3. Connected component analysis for the image F'D;.

4. Find a minimum rectangle R,,, which contains all the motion
regions.

5. Fii(z,y) = |Ie(z,y) — Ie(x,y)| where I+ (z,y) is the
background image at time ¢.
255 Fu(x,y) >Th & (x,y) IS

0 otherwise
where T}, is a threshold.

7. F27t(337y) = ]t(l’7y)_lB,t(fL‘7y) (OI' IByt(Qj./y)_It(sz)).
255  Fyi(x,y) > The & (2,y) € R

0 otherwise
where T}, is a threshold.

FiAND F>; (x,y) € R; (see Fig. 2c)
0 otherwise.

6. Fii(x,y) =

8. Fau(z,y) =

9. F14-Foy = {

Pt OR F Ry, (see Fig. 2
10. (Fl,t +F27t) = { L.t 2.t (mvy) € tp (see 1g c)

otherwise.
Il. Fi=Fit- For+ (Fie+ Fap).
12. Morphological filtering (optional).

()

Figure 2. An example for detection. (a) Source frame. (b) Detec-
tion result from histogram equalization. (c) Motion Region (Step 2
of Algorithm 2). (d) Result from Step 6 of Algorithm 2. (e) Result
from Step 8 of Algorithm 2. (f) Final result using our detection
algorithm.

3.3. Gait Representation

The purpose of gait representation is to describe the
essence of gait patterns and discard the redundancy in raw
gait data. In general, this representation has enormous influ-
ence upon the final performance of gait recognition systems.
A discriminating representation should not only simplify
the recognition of gait patterns, but also reduce computa-

L H, = {(2,1) |F(2,i) 0} G = 1,2,..., L),
2. W I{(j,y)|F(j,y)750} (]: 1727"‘71’)'

3. H(i) = m’(_'j;}‘,l‘.
T/ W,
4. W(J) = m(‘lz\]‘/l/ﬂ
J

tional complexity. However, methods concerned with fea-
ture representation are application specific and have no gen-
eral guidelines. Fortunately, recent gait research revealed
that shape cues play a primary role in gait recognition [23].
This finding enlightens us to extract shape features for gait
identification.

More specifically, we first normalize human silhouette
images to the same size of 32 x32. Then, as is shown in Fig-
ure 3, each size-normalized silhouette image is projected in
the horizontal and vertical directions, respectively. Mean-
while, we can obtain for each projection direction a max-
imum integer value which counts the maximal number of
foreground pixels in that direction. In addition, the two di-
rectional projections are further standardized using the two
maximums. Lastly, we make use of the concatenation of
the two projections to describe the human gait pattern in
the current frame. For sake of convenience, this gait rep-
resentation is referred to as normalized pseudo- height and
width (NPHW). The whole process is illustrated in Algo-
rithm 3. It is worthwhile to point out the relationships be-
tween NPHW and another two gait features closely related
to the NPHW. On the one hand, the NPHW differs from Liu
et al.’s frieze patterns [ 1 3] in that Liu et al. separately utilize
the two unstandardized projections to characterize gait, but
we employ correlated and standardized patterns to represent
human gait. On the other hand, the difference between the
representation of Kale ef al. [12] and the NPHW lies in that
the projections used in this paper are two absolute (or pure)
counter of foreground pixels, whereas Kale et al. use a rel-
ative coarse counter for foreground pixels without taking
into account the vertical cues. As far as the reconstruction
of human shape is concerned, the NPHW representation is
merely a partial description for human shape. That is the
reason for calling it pseudoshape. Figure 3 gives an illustra-
tion for the NPHW gait representation.

3.4. Subspace Projection

Subspace projection often performs the role of dimen-
sion reduction due to the curse of dimensionality. In a nut-
shell, the purpose of subspace projection is three-fold: 1) to
reduce data dimension; 2) to remove data correlation; and
3) to enhance data separability. In this paper, we expect to
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Figure 3. An illustration of the gait representation used in this pa-
per. (a) Direction for the vertical projection. (b) Curve from (a).
(c) Direction for the horizontal projection. (d) Curve from (c). (e)
Concatenation of (b) and (d).

use linear discriminant analysis (LDA) to improve the fea-
ture separability. The singularity issue, however, prohibits
the direct use of LDA to transform feature data. One solu-
tion is to precede LDA with principal component analysis
(PCA).

The PCA projection matrix P, can be derived from
minimizing the reconstruction error in the mean-square-
error sense. This can be formulated as the following op-
timization problem:

i 0 — e |12
Ppcal,’Ien'g,SXd E || Ppcay xz H2
st P);l?;:appca, =1 (1)

where y € R is the feature vector projected from = € R?,
e,y = Pg;aw—suppose that the data has been central-

ized. The constraint Pg;aPpca = [ reinforces the geometric
topology that the basis of the lower-dimensional subspace
be orthonormal. The problem (1) can be further reduced to
Problem (2) using Lagrange multipliers

min  f(P,A) = —trPTC,P+ trA(PTP - 1) (2)

PeRsxd

where C, is the covariance matrix of z, and A is a symmet-
ric matrix composed of Lagrange multipliers. Making the
gradient of f(P, A) with respect to P be zero yields

CyP = PA (3)

Now it is easy to prove that P, boils down to the matrix
whose columns are the d eigenvectors of C correspond-
ing to the first d largest eigenvalues of C';. One simple yet
useful rule for the choice of d is as follows [14]:

. {k

d= mink
ke @,

Z’-ﬂ_l/\i
L=l S T Opi = NiPis A > Ao > e > A
tT(Cz) = Ld,CgD p 1 Z A2 Z =

(C))

where 77 is a threshold within the range 0.95-0.98, and p; is
the eigenvector of C; which corresponds to the -th largest
eigenvalue \; of C';. In this paper, we use T; = 0.95. Nev-
ertheless, only in the sense of minimizing reconstruction er-
ror is P, an optimal projection. In fact, P,., takes not
into consideration how to make samples in the same class
as compact as possible and those in the different classes as
apart as possible.

In this context, the LDA criterion gives an explicit incor-
poration of the two concerns into its objective function:

T Y
max —tr(Pl;fasg Pia) ®))
Piaa tr(Plda,SWPlda)

where S¥ and SY, are inter-class scatter matrix and intra-
class scatter matrix, respectively. After introducing La-
grange multipliers once again, we can simplify the problem
(5) as (6):

min g(P,T') = —trPTSEP +trT(PTSY,P 1) (6)

where I' is a diagonal matrix. Evaluating the derivative of
g(P,T) with respect to P and letting it be zero bring the
necessary condition (7) that the optimal P4, must satisfy:

SY P =Sy, PT. (7)

This is a typical generalized eigenvalue problem and can be
efficiently solved using the matrix SVD. At the same time,
this paper just applies the proportion 98% of the total gen-
eralized “variance” analogous to the choice of d in an effort
to further reduce the dimension of gait features.

Furthermore, the proposed view involving gait recogni-
tion naturally elicits the notion of equivalence constraints—
two consecutive gait feature vectors come from the same
class. The constraints imply the temporal cues among gait,
despite their coarseness. In order to make good use of this
clue, we attempt to learn another linear transformation P,
(z = Preqy) or a mathematically equivalent Mahalanobis
metric P,., P, on the subspace spanned by the columns
of PpcqPida- The relevant component analysis (RCA) algo-
rithm [ 1] actually suits this expectation. In fact, P,.., can be
obtained by solving the problem (8):

LN i 2
max log|P| s.t. - ZZ [ 2;—mil3<1 (8

i=1 j=1

where n, ¢, and n; are the numbers of total samples, classes,
and samples within the i-th class, respectively, and m; is
the mean of the samples in the ¢-th class. After applying the
similar matrix technique to (2) and (6) and discarding the
scale factor, this paper uses the P,.., with the form (9):

Prea = (S3)72. ©9)
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Figure 4. Sample night gait images in the thermal infrared spec-
trum. (a) Normal walking. (b) Fast walking. (c) Slow walking. (d)
Normal walking with a bag.

The optimality of the P,., in (9) lies in two aspects: one
is that it lowers the intra-class variability by the degree to
which the within-class distance is minimized; the other is
that it maximizes the mutual information of data before and
after its transformation, z = P,.,y, under the constraint
that P,., is an invertible linear transformation [1]. As a
result, we can readily obtain in the light of the aforemen-
tioned subprojections a composition projection matrix Py
which directly projects = in the raw feature vector space X
to z in the dimension-reduced space Z:

Py = PraPh P (10)

pca

z = Py (11)

3.5. Classification

This paper takes advantage of the simple nearest neigh-
bor classifier to facilitate the recognition of an unknown gait
sequence U. Letz} (i = 1,2, ..., N) be the i-th raw feature
vectorin U and E; (j = 1,2, ..., c) be an exemplar of the
7-th subject in the low-dimensional space Z. We simplify
the description of the unknown gait sequence U by reducing
U to the mean =" of feature vectors in U, as shown in (12).
Then, we project “ to Z* expressed by (13). Furthermore,
as is displayed in (14), this paper bases the similarity mea-
sure on the Euclidean distance in the space Z. The whole
process is described in (12)—(15):

1 N
T = Nzgf; (12)
v = szl'“_'l (13)
dj = (Z'-E)'(z"-Ej) (14)
) = argmjindj. (15)

4. Experiments

For the purpose of facilitation of the research of night
walker recognition, Tan et al. [20] established an ad hoc
night gait dataset called CASIA Infrared Night Gait Dataset,
which is the largest night gait database in terms of the
number of subjects. This dataset consists of night gait se-
quences of 153 subjects (130 males and 23 females) and
takes into account four walking conditions: normal walk-
ing, slow walking, fast walking, and normal walking with

Figure 5. Sample silhouettes from the CASIA Infrared Night Gait
Dataset. 1st row: normal walking; 2nd row: fast walking; 3rd row:
slow walking; 4th row: normal walking with a bag.

a bag. Figure 4 displays four sample images excerpted
from this dataset. The sample images present an illustra-
tion of the varieties of image quality, with regard to inten-
sity variation, dynamic gain, and halo effect. All these fac-
tors pose a great challenge for a night gait recognition algo-
rithm. Nonetheless, this dataset indeed offers an important
and valuable complement from the perspective of the diver-
sity of gait data.

4.1. Results

We perform our experiments on the basis of the CASIA
Infrared Night Gait Dataset. Figure 5 depicts sample sil-
houette images obtained by our detection algorithm. Ac-
cording to the specification of Tan e al. [20], this paper
conducted a total of four experiments in consideration of
the four walking conditions. Here we made use of the set
of three normal-walking sequences from each subject as the
training set and the remaining sequences as the testing set.
In addition, we repeated the experiments four times (Each
time three different normal walking sequences from each
person were chosen as training data) and employed the av-
erage of recognition results to report the final performance,
since there are four sequences of normal walking gait for
each subject. The reason for not using leave-one-out here
is that the large number of gait sequences in this dataset
would require time-consuming computation if we did. Ta-
ble 1 presents the details of the experiments. Exp. A is
focused on the performance of algorithms under the nor-
mal walking condition. Exps. B and C aim to evaluate the
impact of walking paces (fast and slow) on recognition per-
formance. Exp. D is motivated to assess how appearance
changes affect recognition accuracy.

In addition, PCA and LDA are so widely used in the gait
recognition community that we need to make a fair compar-
ison among PCA, PCA+LDA, and PCA+LDA+RCA based
on the NPHW gait representation in the hope of justifica-



Exp. | Gallery | Probe | #Gallery Seq. | #Probe Seq.
A | Normal | Normal 459 153
B Normal Fast 459 306
C Normal | Slow 459 306
D | Normal Bag 459 306

Table 1. Four experiments on the CASIA Infrared Night Gait
Dataset.

Exp. | PCA | PCA+LDA | PCA+LDA+RCA
A | 98.4% 98.0% 98.4%
B 91.8% 93.0% 93.7%
C 82.4% 90.6% 91.3%
D | 244% 24.2% 24.7%

Table 2. Correct classification rate (rank 1) using the NPHW on
the CASIA Infrared Night Gait Dataset

| —+—PCA .
0.9853‘ — © — PCA+LDA o 92‘ — © — PCA+LDA
' —%— - PCA+LDA+RCA ' —%— - PCA+LDA+RCA
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Figure 6. CMS of the four experiments. (a) CMS of normal walk-
ing. (b) CMS of fast walking. (c) CMS of slow walking. (d) CMS
of normal walking with a bag.

tion of incorporating the RCA learning. To our knowledge,
there are few formal algorithmic comparisons at the level of
subspace projection in the gait recognition.

Table 2 lists correct classification rates (rank 1) of the
four experiments, and Figure 6 shows recognition perfor-
mance measured by cumulative match score (CMS) for
ranks up to 20. Here the CMS at rank k£ means the pro-
portion of queries occupying one of the first k closest re-
semblances to the real identity. From Table 2 and Figure 6,
we can draw the following conclusions:

e The normal walking condition can achieve the best
performance, thanks to the similarity between training
data and testing data in the aspect of walking traits.
Walking pace variation can induce the decline in cor-
rect recognition rates which is attributed to mean shape
changes caused by varying stride frequency. In our

eyes, the reason for the superiority of fast walking
performances over the ones in slow walking is that
the variation in stride frequency can lead to the devia-
tion from the mean shape in normal walking, and slow
walking has the higher chance of accumulating this er-
ror (compared with fast walking). Furthermore, the
appearance change has greater impact on the recogni-
tion performance, in comparison with other factors—
normal walking, fast walking, and slow walking.

e The added RCA learning algorithm can slightly help
improve the data separability, as shown in the fourth
column of Table 2. This can be explained from a ge-
ometric view. P,., can minimize the within-class dis-
tance in the final projection subspace, though not con-
sidering between-class cues due to its original cluster-
ing purpose. However, we conjecture that P4, has
optimized the between-class topology and that RCA
keeps this topology as intact as possible and at the
same time shrink the volume of each class. Hence the
data separability is consolidated.

e The combination of PCA+LDA+RCA generally out-
performs PCA and PCA+LDA in terms of correct clas-
sification rate. This is due to the fact that the addition
of the RCA projection can further improve the intra-
class compactness, which favors classification when
using the nearest neighbor rule.

e The LDA projection P4, preceded by PCA can not al-
ways improve correct classification rates over the sin-
gle Pycq. Its loss in Exp. A and Exp. D is probably
due to the fact that the LDA projection misses some
useful features for lower dimension which have no ac-
tive effect on fast walking gait and slow walking gait;
however, the RCA projection P,.., can compensate for
this loss in the form of better data separability.

e Last but not least, our algorithm is promising, at least
in the case of having no great appearance changes, in
terms of identification performance and the number of
subjects. Although our method is relatively sensitive
to great appearance changes, it can still assist in other
biometrics (such as face), if available, to reduce the
scope of pattern matching in view of its CMS values.

4.2. Discussions

The key to the simplicity of our detection algorithm is the
assumption on thermal imagery in the scene. If the assump-
tion is violated (e.g., due to the severe self-regulation in the
thermal infrared camera), then our detection is likely to in-
troduce some redundant noise. However, the detection al-
gorithm seems to cope well with the self-regulation of mod-
erate level. The degree to which there occurs self-regulation



in good-quality thermal cameras is small and hence the self-
regulation is not a vital issue for our method.

Our method avoids the traditional route for automated
gait recognition, but it actually makes loose use of temporal
cues in the form of equivalence constraints, rather than es-
tablishing an HMM model to simulate the temporal relation.
Its benefit is in bringing simplified computation, compared
with the HMM model. A much subtler scheme is to com-
bine stance clustering with our algorithm for the purpose of
making finer distinction on a posture scale.

5. Conclusions

This paper has dealt with the problem of night walker
recognition with the help of infrared gait patterns. Exper-
imental results on the CASIA Infrared Night Gait Dataset
[20] indicate that the proposed algorithm makes a promis-
ing advance in night gait recognition and that the gait view
used is reasonable to some extent, just from the perspective
of recognition.

Our contributions include the following: 1) A histogram-
based gait representation can be used to characterize walker
signatures; 2) this paper makes full use of the notion of
equivalence constraints to improve data separability by in-
corporating the RCA learning into the process of gait recog-
nition; 3) this paper proposes a simple yet useful method for
weakening intensity perturbation induced by dynamic gain
and halo effect in thermal video which are often ignored by
prior work.
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