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ABSTRACT

In this paper, a new, simple but effective method is proposed for
blind image steganalysis, which is based on run-length histogram
analysis. Higher-order statistics of characteristic functions of three
types of image run-length histograms are selected as features. Sup-
port vector machine is used as classifier. Experimental results
demonstrate that the proposed scheme significantly outperforms
prior arts in detection accuracy and generality.

Index Terms— Blind steganalysis, run length histogram, su-
pervised learning.

1. INTRODUCTION

Steganography has been a hot topic and has drawn much attention
in recent years. However, cases have been reported where steganog-
raphy has been abused for bad purposes. Hence, the research of
steganalysis, which is a counter-technology of steganography aimed
at detecting the presence of secret message in cover medium, serves
the urgent needs of network security to block covert communication
with illegal information.

Various steganalysis techniques have been proposed for tack-
ing steganographic algorithms. These techniques can be roughly as-
cribed to two categories. One is called specific steganalysis which is
targeted at a particular known steganographic algorithm. The other
is named universal (or blind) steganalysis that can defeat steganog-
raphy blindly, or in another word, that can detect the hidden data
without knowing the embedding methods, which seems to be more
desirable in practical applications.

The statistical blind steganalysis schemes using supervised
learning on features extracted from both plain cover and stego sig-
nals have been proved successful in coping with many existing
steganographic methods. In [1], Farid et al. proposed a universal
supervised learning steganalysis scheme using quadrature mirror
filters to decompose a test image into wavelet subbands and the
higher-order statistical features are generated from wavelet coef-
ficients to capture the difference between plain cover and stego
images. Similar features formulated from the prediction errors
of wavelet coefficients of each high-frequency subband are also
utilized in their method. Harmsen and Pealman in [2] described
another method that exploits properties of the center of mass of the
Fourier transform of the image histogram. In the work of [3], Chen
et al. utilized multi-order moments of the projection histogram (PH)
of image empirical matrix as well as the characteristic function of
PH as their features for steganalysis.

The construction of valid blind steganalysis methods usually
starts by extracting a set of features from the original and stego im-
ages and then training a classifier on a large number of such images
to ensure that even the slightest statistical variation in the features is

learned by the machine. The selection of appropriate features plays
a crucial role in building the stego classifier. This paper focuses
on extracting sensitive features to embedding modification and pro-
poses a new, simple but effective blind image steganalysis approach.
Statistical moments of characteristic functions of image run-length
histogram and its variants are taken as features. SVM is utilized as
classifier.

The rest of this paper is organized as follows. Section 2 dis-
cusses the proposed approach based on image run-length histogram
analysis. Experimental results and comparisons are presented in
Section 3, followed by concluding remarks in Section 4.

2. PROPOSED APPROACH

In this section, we present the details of the proposed method. We
first describe three run-length representations and then discuss how
to extract effective steganalysis features from run-length histograms.

2.1. Run-length Analysis For Steganalysis

The concept of run-length was proposed in the 1950s and has be-
come the compression standard in fax transmissions and bitmap-file
coding [4]. A run is defined as a string of consecutive pixels which
have the same gray level intensity along a specific linear orientation
(typically in 0o, 45o, 90o, and 135o). The length of the run is the
number of repeating pixels in the run. For a given image, a run-
length matrix p(i, j) is defined as the number of runs with pixels of
gray level i and run length j. For a run-length matrix pθ(i, j), let M
be the number of gray levels and N be the maximum run length. We
can define the image run-length histogram (RLH) as a vector:

Hθ(j) =

MX
i=1

pθ(i, j). 1 < j < N (1)

This vector represents the sum distribution of the number of runs
with run length j in the corresponding image. In order to reduce the
effect of different image sizes, the RLH may be normalized by the
maximal value of the histogram. Short runs ( with smaller j ) refer
to those runs with a small number of pixels, while long runs ( with
larger j ) imply those runs with a largenumber of pixels.

As most current steganographic schemes hide data based on
per-pixel processing, when one bit of message is embedded in the
cover image, only one corresponding image pixel would be changed
slightly. Such attributes of data embedding process would directly
be reflected by the local intensity variations of the image. Our work
is inspired by this observation. It is claimed that the run-length
statistics could capture the coarseness of a texture in specified di-
rections [4]. The lengths of runs could reflect the details of image



texture element, hence reflect the local intensity variations of the im-
age. This is the major reason for our using the run-length histogram
as the basis of the features for steganalysis. After the processing of
per-pixel data embedding, the perceived local intensity continuity
will be disturbed and the corresponding pixel runs will be alerted.
For example, after LSB data embedding, values of some image pix-
els will be increased or decreased by one as a result. These changes
would directly influence the image RLH. A concurrent change oc-
curs: long runs in image would ”break into” short runs, leading to a
smaller number of long runs and a larger number of short runs. As
a result, the image RLH would ”shrink”. Although there also exist
cases that short runs may be combined to a long run, the tendency
of these combinations is much less significant than the splitting of
long runs because of the spatial correlation of natural images. Fig.1
shows the RLHs of the ’Lena’ image before and after data hiding,
where the shrinkage is clearly seen.
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Fig. 1. Example of run length histograms of original and stego Lena.

2.2. Parameterized Run-Length Representations

For natural images, the number of short runs is significantly more
than the number of long runs in an image RLH. The maximal length
of runs is usually very limited compared to the range of possible
length values (see Fig.2 the maximal length of the runs in Lena is
less than 15). In order to make the shrinkage of image RLH more
obvious so as to make RLH more sensitive to data embedding, we
define two new run-length representations, which are variations of
the traditional run-length matrix p(i, j), by counting the pixels into
a same run with different rules and parameters.

1. Quantization Run-length Representation: Instead of cal-
culating the run-length matrix of image pixels directly, we
firstly apply intensity quantization on the image plane using a
quantization step factor Q. Then we calculate the RLH of the
quantized image matrix. For example, for a 256 gray-level
image with Q = 2, we get a new image matrix whose range of
intensity values is from 0 to 127. Hence, the number of long
runs in this new image RLH would increase compared to the
original image RLH, because each pair of neighboring inten-
sities would fall into the same run. Obviously, the lager the
Q is, the more long runs we can expect. The traditional im-
age run-length matrix is just the special case of quantization
run-length matrix with Q = 1.

2. Difference Run-length Representation: A run in this type
of representation is defined as a string of pixels with a max-
imum inter-pixel absolute intensity difference of ε along a
direction. Thus, a string of consecutive pixels with small
intensity difference would form a single run. For example,
for a string of 4 image pixels with intensity of 124, 125, 125

and 126, their corresponding traditional run-length matrix is
p(124, 1), p(125, 2) and p(126, 1), while their correspond-
ing difference run-length matrix in case of ε = 1 is p(124, 4).
Similarly, the larger the ε is, the more long runs we can ob-
tain. When ε is 0, the difference run-length matrix is simply
the traditional image run-length matrix.

The two run-length representations defined above make the long
runs in image run-length matrix much more than those of traditional
run-length matrix. As a result, the tendency of shrinkage of their
corresponding RLH caused by data hiding turns to be much more
obvious, hence the RLH is more sensitive to data embedding. As
shown in Fig.2, the maximal length of runs for the ’Lena’ image has
been extended to 40 and 60 respectively. At a first glance, it seems
that the two new run-length representations are inconsistent with our
assumption, that is, data hiding would increase the local intensity
variations of images and the run-length statistics could reflect this
variation. However, our experiences show that the influence on run-
length statistics caused by data embedding could still be captured by
global analysis on image RLHs and appropriate setting of parameters
Q and ε. Fig.3 is the distributions of the two parameterized runs for
the ’Lena’ image regardless of intensity in raw representation, where
the different runs are shown alternatively in white and black. We can
still observe that their runs are broken into pieces after data hiding,
in another word, there are more short runs and less long runs in stego
image.
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Fig. 2. Examples of parameterized image RLHs of original and stego
Lena. (a): quantization RLHs with Q = 4; (b): difference RLHs with
ε = 2.

We now have three types of image run-length histograms, de-
noted as H1 for traditional image RLH, H2 for quantization image
RLH, H3 for difference image RLH. In the following, we introduce
the features extracted from these image RLHs for steganalysis.

2.3. Features For Steganalysis

In most blind steganalysis methods, the higher-order statistics of an
image and its other representations are introduced as features be-
cause these statistics are very sensitive to even slight embedding
modifications [5]. The statistical moments of the characteristic func-
tion (denoted as CF) of certain histogram are claimed to be very ef-
fective features and were applied in a series of previous work [6].
Here, we also utilize multi-order moments of CF of the three types
of image RLHs as features, defined as:

Mn =

L/2X
j=1

fn
j |Fi(fj)|/

L/2X
j=1

|Fi(fj)|. i = 1, 2, 3; (2)
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Fig. 3. Distribution of the two parameterized runs regardless of in-
tensity in raw representation of the Lena image, where the different
runs are shown alternatively in white and black. (a): original Lena
with Q = 4; (b): stego Lena with Q = 4;(c): original Lena with ε = 2;
(d):stego Lena with ε = 2.

where Fi is the CF of image RLH Hi (i.e. the DFT of Hi), Fi(fj)
is the component of Fi at frequency fj , and L is the DFT sequence
length. In our experiments, we compute the first three order mo-
ments of each CF of the RLHs (H1, H2, H3) along four different di-
rections (0o , 45o, 90o, and 135o) as features for steganalysis. Thus,
for each type of image RLH, we get a 12-D feature vector. The
fourth and higher order moments of CF are not taken as our fea-
tures because their discrimination of plain cover and stego images
are poorer than the first three order moments in our experiments.

2.4. Classifier

The design of classifier is another important task in a pattern recog-
nition system. Since our work in this paper only focuses on feature
extraction rather than classification, Support Vector Machine (SVM)
is simply taken as the classifier in our experiments for its optimal and
efficient classification performance for large scale learning. More
specifically, we utilize the SV M light and a non-linear kernel is cho-
sen. All the comparisons are tested on the same database and classi-
fier.

3. EXPERIMENTS

In this section, several sets of experiments have been conducted
to demonstrate the performance of the proposed blind steganalysis
method. Comparative experimental studies are also presented to
show the superiority of the method over typical existing methods
in terms of detection accuracy and generality.

3.1. Database

We choose a commonly used image database, the CorelDraw
Database,in our experiments. And totally 1142 images from Corel-

Table 1. The detection accuracy of three image RLHs with different
parameters Q and ε at 5% false positive rate.

Detection Accuracy (%)
Scheme H1 H2 H3

Q=2 Q=3 Q=4 ε=1 ε=2 ε=3
#1 94.7 97.2 86.3 78.5 95.6 94.3 87.2
#2 96.4 96.8 84.9 80.9 98.1 75.3 67.1
#3 97.3 98.6 92.6 79.2 97.0 81.3 64.8
#4 95.2 97.1 90.3 85.6 97.3 94.5 87.2
#5 91.2 94.3 87.5 65.1 86.2 59.6 51.8
#6 96.6 98.9 91.5 88.2 98.6 64.2 53.7

Mixture 93.4 96.7 82.3 64.7 95.1 68.4 53.1

Draw version 11 CD #4 were collected as the original images. Also,
six sets of stego images were generated by using the following six
common stego-algorithms:

#1: Non-blind spread spectrum (SS)method [7]. (0.15bpp, 36dB)
#2: 8× 8 DCT block SS method [8]. (0.1bpp, 48dB)
#3: Generic LSB embedding method. (0.3bpp, 56dB)
#4: Adaptive LSB embedding method[9]. (0.3bpp, 51dB)
#5: LSB matching embedding method. (0.2bpp, 48dB)
#6: Generic quantization index modulation (QIM) method[10].

(0.11bpp, 47dB)

We just embed a small amount of secret data using the above
stego-algoritms in order to make our tests more convincing. The
approximate average embedding rates and the PSNR are shown in
brackets. The same training and testing procedures are used. All the
experiments are repeated 5 times under similar conditions, and the
average rate is recorded for each run.

3.2. Detection Performance

We tested our method on the above database. There are two modes
in the experiments. In a ”individual” mode, we randomly select 600
original images and their stego images generated by one of the six
stego-algorithms as training samples. The remaining 542 pairs are
used for testing. To test the generalization (or the blindness) of the
proposed features, in the ”mixture” mode, again 600 original images
are randomly selected for training. But this time, their corresponding
training stego images are not chosen from one particular set of stego
images but the mixed six sets of stego images. It means the whole
training samples consist of 600 original images and 3600 (6× 600)
stego images. Then the remaining 542 original images and their
corresponding 3252 (6 × 542) stego images are used to test. The
detection accuracy represents the ratio of correct classification of test
images.

As for the two new run-length representations, each representa-
tion has a parameter for generating the run-length histogram (i.e.Q
and ε respectively). Different value of these two parameters would
result in different image RLH, hence the different features for ste-
ganalysis. To evaluate the performance of features from different
image RLHs for steganalysis, we firstly design an experiment to test
the features from three different RLH representations. Table 1 illus-
trates the obtained detection accuracy of these features generated by
different parameters Q and ε. Note that H1 is the special case of H2

and H3 when Q = 1 and ε = 0.
From Table 1, we can see that the best results are obtained from

H2 when Q= 2. As a whole, H3 with ε = 1 is also better than H1. In
order to select an optimal and rational combination of the three sets



Table 2. Comparison of our proposed approach with existing blind
steganalysis methods. The detection accuracy numbers are obtained
at 5% false positive rate.

Schemes Shi [1] Chen [2] Proposed
78-D 108-D 36-D

#1 90.56% 86.74% 96.76%
#2 91.83% 93.45% 97.43%
#3 92.51% 92.91% 99.37%
#4 93.28% 92.54% 98.62%
#5 86.07% 88.28% 93.69%
#6 97.24% 98.45% 99.92%

Mixture 90.24% 93.30% 97.92%

of RLH features for blind steganalysis, we use the features generated
by H2 with Q = 2, H3 with ε = 1, and the traditional image RLH H1

together as a final feature vector for further blind image steganalysis.
This way, we get a 36-D feature vector for each cover image.

3.3. Comparison With Existing Methods

Furthermore, we compare our final 36-D feature vector with the 78-
D feature vector of [6] and the 108-D feature vector of [3]. The
former is often taken as the baseline method for using statistical fea-
tures extracted from CF of histograms and the latter is an effective
extension to the former. The comparative results are shown in Ta-
ble 2. It can be seen that our proposed 36-D feature vector provides
clearly better detection accuracy compared with the other two meth-
ods.

In addition, another experiment is designed to test the generality
of the combined 36-D feature vector to an untrained stego-algorithm.
In this test, the training procedures are exactly the same as that in
previous ”mixture” mode, but during testing, we replace the #4 test-
ing stego samples with another 542 stego images generated by an un-
trained stego-algorithm designed in [11] (The embedding rates and
the PSNR are 0.15bpp and 52dB). The corresponding ROC curves
are shown in Fig.4. We can notice that our proposed method has a
better generality to an untrained stego-algorithm than others.
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Fig. 4. Comparison of generality test of the proposed method with
existing methods in terms of ROC curves.

4. CONCLUSION

In this paper, we have presented a new, simple but effective method
for blind image steganalysis based on run-length analysis. As a first

attempt, we extracted features through processing image run-length
histograms because the distribution of image run-length histogram
would be altered after data hiding. Moreover, we designed two al-
ternative representations for image run-length in order to make the
changes more obvious. The first three moments of the CF of three
image RLHs are selected as features to distinguish the plain cover
image from stego images. Experimental results have illustrated the
effectiveness of our proposed features for blind steganalysis as well
as their superiority over prior arts. Moreover, the proposed method
also has a better performance to an untrained stego-algorithm com-
pared to others in our tests.
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