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Abstract

In this paper, a new affine invariant of trapezia is introduced, and the projection of trapezia is deduced from this invariant. Known the
lengths of the two parallel sides of a trapezium, pose estimation and plane measurement can be realized in a very simple way from the
projection of the trapezium. Experiments on simulated and real images show that the approach is robust and accurate. Two parallel lines,
which can determine a trapezium, are not rare in many structured scenes, the proposed method has wide applicability.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Pose determination (Haralick et al., 1991; Quan and
Lan, 1999; Haralick, 1989) is to estimate the position and
orientation of one calibrated camera from a set of corre-
spondences between 3D control points and 2D image
points. It has important applications such as cartography,
robotics, tracking and object recognition. Pose determina-
tion is also referred to as the perspective-n-point problem
(PnP) (Horaud et al., 1989; Quan and Lan, 1999; Fishler
and Bolles, 1981). Fishler and Bolles (1981) define the
problem as: Given the relative spatial locations of n control
points, and given the angle to each pair of control points
from the perspective center, find the lengths of the line seg-
ments joining the perspective center to each control point.

Generally speaking, the PnP problem has a unique lin-
ear solution with n P 6 and can be solved by the direct lin-
ear transformation (DLT), while it has multiple solutions
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with n < 6 (Fishler and Bolles, 1981; Gao et al., 2003; Hu
and Wu, 2002; Wu and Hu, 2001). Fishler and Bolles
(1981) solve the P4P problem by finding solutions associ-
ated with subsets of three points and selecting the common
solutions they have. Horaud et al. (1989) casts the P4P
problem into a problem of solving a biquadratic polyno-
mial equation with one unknown, and gives an analytic
solution. Penna (1991) points out that, given four coplanar
points with known coordinates in the object centered frame
and their image points, camera’s pose can be determined
linearly and uniquely. Quan and Lan (1999) present a lin-
ear solution to pose estimation with n P 4. They decom-
pose the problem into several P3P problems with a
common solution. Using the classical Sylvester resultant,
they convert the problem into a 4-degree polynomial equa-
tion system with one unknown, which can be viewed as a
homogeneous linear equation system in each-order term.
Recently, Ansar and Daniilidis (2003) present a similar lin-
ear approach. By considering the multiplication of each
pair of unknowns as a new variable, they convert the con-
straint equation system into a high dimensional linear
equation system. Both of the two linear approaches can
give the unique solution for the reference points not lying
on the critical configurations. Moreover, there are many
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1 In the paper, we always assume q4 = 1.
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approaches based on iterative methods (Yuan (1989);
Lowe, 1991; Liu and Wong, 1999). The iterative methods
may suffer from the problems of initialization and
convergence.

Vision based measurement is another important problem
in computer vision. It has wide applications such as architec-
tural measurement, reconstruction from paintings, forensic
measurement and traffic accident investigation (Criminisi,
2001). Generally speaking, the methods of computer vision
based measurements in the literature may be broadly divided
into two categories. One is to reconstruct the metric struc-
ture of the scene from two or more images by stereo vision
techniques (Liebowitz et al., 1999; Hartely and Zisserman,
2000), which is a hard task due to the problem of point cor-
respondence in different views, the other is to directly use a
single uncalibrated image under the knowledge of some geo-
metrical scene constraints such as coplanarity, parallelism,
perpendicularity, etc. (Criminisi, 2001; Criminis et al.,
1999a; Criminis et al., 1999b). In (Criminisi, 2001; Criminis
et al., 1999a), a key point based method to measure the
Euclidean distance of two points on a world plane is pro-
posed. In this method, at least four correspondences
between 3D control points and 2D image points should be
known to estimate the plane homography, and the points
on the plane are reconstructed by the homography.

Invariants (Mundy and Zisserman, 1992; Mundy et al.,
1994) are properties of geometric configurations, which
remain unchanged under an appropriate class of transfor-
mations. Many visual tasks can be solved by invariants
such as recognition in model based vision, shape descrip-
tors for 3D objects and transference, characterizing
unknown geometric structure. In this work, we introduce
a new affine invariant of trapezia, and the projection of tra-
pezia is deduced from this invariant. Using the projection
of trapezia, we present a very simple solution of pose deter-
mination and plane measurement, in which we only need to
know the lengths of the two parallel sides of a trapezium.
In some applications such as face recognition, visual sur-
veillance, we only need to estimate the camera’s orienta-
tion. If the trapezium is an isosceles trapezium, we can
estimate the rotation between the object frame and the
camera frame without any metric information.

In the paper, a 3D point is denoted by X = [x,y,z]T, and a
2D point is denoted by m = [u,v,1]T (homogeneous coordi-
nate). The camera is of the pinhole model, then under the
camera coordinate system, a 3D point X is projected to its
image point m by km = KX, where k is a scale factor (projec-
tion depth of 3D point X), K is the camera intrinsic matrix.

K ¼
f s u0

0 af v0

0 0 1

2
64

3
75;

where f is the focal length, a is the aspect ratio of the image
u and v axes; p = [u0,v0,1]T is the principal point, and s the
parameter describing the skew of the two image axes. We
always assume that the camera intrinsic matrix is known
and use the normalized coordinate on the image plane:
~m ¼ K�1m. In this case, the coordinate of a 3D point X
under the camera coordinate system can be expressed as
X ¼ k~m.

The paper is organized as follows: In Section 2, a new
affine invariant of trapezia is introduced, and the projec-
tion of trapezia is deduced from this invariant; Analytical
solution of pose estimation is shown in Section 3; Section
4 discusses the plane measurement; Section 5 analyses
degeneration of the system; experiments are reported in
Section 6; conclusions are given at the end of this paper.

2. Invariants and projection of trapezia

2.1. Invariants of trapezia

Let {Xi: i = 1,2,3,4} be the four vertices of a trapezium,

we always assume X1X2

��!
==X3X4

��!
, d12 = kX2 � X1k, and

d34 = kX4 � X3k in this paper. Then, the parameter,

r ¼ jjX4 � X3jj
jjX2 � X1jj

ð1Þ

is an affine invariant of trapezia since an affine transforma-
tion preserves the length ratio of two parallel line segments.
Next, we introduce a new affine invariant of trapezia,
which is crucial in our work.

From X1X2

��!
==X3X4

��!
and Eq. (1), we have X4 � X3 =

r(X2 � X1). Thus,

X4 ¼ rX2 � rX1 þ X3 ¼ ½X1;X2;X3�½�r; r; 1�T:
Let X = [X1,X2,X3], then

X�1X4 ¼ ½�r; r; 1�T: ð2Þ
Since r is an affine invariant, Eq. (2) is also an affine invari-
ant. We can give a direct proof as:

Let X 0 = AX + t be a 3D affine transformation, then

X 04 ¼ AX4 þ t ¼ ð�rAX1 þ rAX2 þ AX3Þ þ t

¼ ð�rX 01 þ rt þ rX 02 � rt þ X 03 � tÞ þ t

¼ �rX 01 þ rX 02 þ X 03:

Thus X 0�1X 04 ¼ ½�r; r; 1�T. Hence, Eq. (2) is an affine invari-
ant of trapezia.

2.2. Projection of trapezia

In the paper, we always assume that the camera center is
not on the plane defined by the trapezium. Using the affine
invariant (2), we can obtain the projection of trapezia.

Proposition 1. Given the image f~mj : j ¼ 1; 2; 3; 4g of a

trapezium {Xj: j = 1,2,3,4}, under the camera coordinate

system, we have:

X j ¼ k4r�1qj ~mj; j ¼ 1; 2; X j ¼ k4qj ~mj; j ¼ 3; 4; ð3Þ
where k4 is the projection depth of the point X4,
½q1; q2; q3�

T ¼ ½�~m1; ~m2; ~m3��1 ~m4, q4 = 1.1
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Proof. Under the camera coordinate system, we have

X j ¼ kj ~mj; j ¼ 1; 2; 3; 4: ð4Þ

Then, X , ½X1;X2;X3� ¼ Mdiag½k1; k2; k3�, where M ¼
½~m1; ~m2; ~m3�.

Since the camera center is not on the trapezium plane,
the matrix X is reversible. Thus, the matrix M is also
reversible. Hence, we have: X�1 = diag(1/k1,1/k2,1/k3)
M�1. Then

X�1X4 ¼ diagð1=k1; 1=k2; 1=k3ÞM�1ðk4 ~m4Þ
¼ diagðk4=k1; k4=k2; k4=k3ÞM�1 ~m4:

From

M�1 ~m4 ¼ diagð�1; 1; 1Þ � ½Mdiagð�1; 1; 1Þ��1 ~m4

¼ diagð�1; 1; 1Þ � ½�~m1; ~m2; ~m3��1 ~m4

¼ ½�q1; q2; q3�
T
;

we obtain X�1X4 = [�k4q1/k1,k4q2/k2,k4q3/k3]T.
By the affine invariant (2), we have [�k4q1/k1,k4q2/

k2,k4q3/k3]T = [�r, r, 1]T. Thus,

kj ¼ k4r�1qj; j ¼ 1; 2; kj ¼ k4qj; j ¼ 3; 4:

Substituting them to Eq. (4), Eq. (3) holds. h
3. Pose estimation

3.1. Analytical solution for the P4P problem
1v

2v

p

q

1m

2m
12m

3m
4m

12n1n

2n

1X

2X
12X

1Y
2Y12Y

Fig. 1. The images of two non-parallel line segments and their middle
points.
Proposition 2. Assume that the image of a trapezium {Xj} is
f~mjg, and the lengths of the two parallel sides, d12 and d34,

are known, then the distance from each vertex of the

trapezium to the camera center is

jjX jjj ¼
d12jjqj ~mjjj

jjq4 ~m4 � q3 ~m3jj
; j ¼ 1; 2; ð5Þ

jjX jjj ¼
d34jjqj ~mjjj

jjq4 ~m4 � q3 ~m3jj
; j ¼ 3; 4: ð6Þ

Proof. By Eq. (3), under the camera coordinate system,

X j ¼ k4r�1qj ~mj; j ¼ 1; 2; X j ¼ k4qj ~mj; j ¼ 3; 4:

From d34 = kX4 � X3k, we have d34 ¼ k4kq4 ~m4 � q3 ~m3k.
Then k4 ¼ d34

kq4 ~m4�q3 ~m3k. Since r ¼ kX4�X3k
kX2�X1k ¼

d34

d12
, we can

obtain

X j ¼
d12qj

jjq4 ~m4 � q3 ~m3jj
~mj; j ¼ 1; 2; ð7Þ

X j ¼
d34qj

jjq4 ~m4 � q3 ~m3jj
~mj; j ¼ 3; 4: ð8Þ

And thus, we obtain Eqs. (5) and (6). h
Remark 1. In the classical P4P problem, the distance
between each pair of control points must be given. Propo-
sition 2 shows that if the four control points are vertices of
a trapezium, we only need to know the lengths of the two
parallel sides. Especially, if the four points are vertices of a
parallelogram, we only need to know the length of one side.
In addition, we can also obtain the lengths of other two
sides of the trapezium:

jjX3 � X1jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd34q3 ~m3 � d12q1 ~m1ÞTðd34q3 ~m3 � d12q1 ~m1Þ

ðq4 ~m4 � q3 ~m3ÞTðq4 ~m4 � q3 ~m3Þ

s

ð9Þ

jjX4 � X2jj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðd34 ~m4 � d12q2 ~m2ÞTðd34 ~m4 � d12q2 ~m2Þ
ðq4 ~m4 � q3 ~m3ÞTðq4 ~m4 � q3 ~m3Þ

s

ð10Þ

Corollary 1. Given the image of the two non-parallel line

segments and their middle points, and if known the lengths

of the two line segments, then we can compute the distances

from the end points of the line segments to the camera center.

Proof. As shown in Fig. 1, let the images of the two line
segments {X1X2,Y1Y2} and their middle points {X12,Y12}
be { ~m1 ~m2; ~n1~n2} and { ~m12; ~n12} respectively. Then we can
determine the vanishing points, ~v1 and ~v2, of the two line
segments X1X2 and Y1Y2 on the image plane by cross ratio:

ð~m1 ~m2; ~m12~v1Þ ¼ �1;

ð~n1~n2; ~n12~v2Þ ¼ �1:

�
Let p(q) be the line that passes through ~v2 and ~m1ð~m2Þ. The
intersection of the line p(q) with one line that passes
through ~v1 is denoted by ~m3ð~m4Þ. Then, f~m1; ~m2; ~m3; ~m4g
must be the image of a parallelogram, and thus we can
compute the distances from the end points of the line seg-
ment X1X2 to the camera center.

Similarly, we can compute the distances from the end
points of Y1Y2 to the camera center. h

Remark 2. In Corollary 1, if the two non-parallel line seg-
ments are coplanar, we only need to know any one length
of the two lengths for computing the distance from the end
points of the line segments to the camera center by Corol-
lary 2.
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3.2. Analytical solution for the camera’s position and

orientation
Lemma 1. Assume that the image of a trapezium {Xj} is

f~mjg, and the lengths of the two parallel sides, d12 and d34,

are known. Let XTP = 1 be the equation of the trapezium

plane under the camera coordinate system. Then, we have

P ¼ M�1
p bp; ð11Þ

where

Mp ¼
d2

12

P2
j¼1q2

j ~mj ~mT
j þ d2

34

P4
j¼3q2

j ~mj ~mT
j

jjq4 ~m4 � q3 ~m3jj
;

bp ¼ d12

X2

j¼1

qj ~mj þ d34

X4

j¼3

qj ~mj:

Proof. From XT
j P ¼ 1, we have X jX

T
j P ¼ X j, and then,P4

j¼1X jX
T
j

� �
P ¼

P4
j¼1X j. So, we have:

P ¼
X4

j¼1

X jX
T
j

 !�1X4

j¼1

X j: ð12Þ

Substituting Eqs. (7) and (8) into (12), we can obtain Eq.
(11). h

We establish an object coordinate system with origin at
the point X1 and axes as shown in Fig. 2. Where, the direction
e3 of z-axis is the direction np of the trapezium plane, the

direction of x-axis is the unit vector e1 ¼ X1X2

��!
=kX1X2

��!
k,

and thus the direction of y-axis is e2 = np · e1.
By Eq. (7) and Lemma 1, under the camera coordinate

system, the coordinates of origin and three axis directions
of the above object coordinate system are as follows:

X1 ¼
d12q1 ~m1

jjq4 ~m4 � q3 ~m3jj
;

e1 ¼
q2 ~m2 � q1 ~m1

jjq2 ~m2 � q1 ~m1jj
;

e3 ¼ np ¼ P=kPk;

e2 ¼ e3 � e1 ¼
P
jjPjj �

q2 ~m2 � q1 ~m1

jjq2 ~m2 � q1 ~m1jj

� �
:

Hence, we can give the following Proposition 3.
O

X1 X2

X4X3

m1 m2

m3
m4

r

1
x

y

z

[R,t]

Fig. 2. The object coordinate system.
Proposition 3. Assume that the image of a trapezium {Xj} is

f~mjg, and the lengths of the two parallel sides, d12 and d34,

are known. Then the camera’s position and orientation can

be expressed respectively as

t ¼ d12q1 ~m1

kq4 ~m4 � q3 ~m3k
; ð13Þ

R ¼ q2 ~m2 � q1 ~m1

kq2 ~m2 � q1 ~m1k
;

P
kPk �

q2 ~m2 � q1 ~m1

kq2 ~m2 � q1 ~m1k

� �
;

P
kPk

	 

:

ð14Þ

If the trapezium is an isosceles trapezium, we have the
following proposition.

Proposition 4. Assume that the image of an isosceles

trapezium {Xj} is f~mjg. Then we can determine the length

ratio r of the two parallel segments and the camera’s

orientation as follows:

r ¼ ðq2 ~m2 þ q1 ~m1ÞTðq2 ~m2 � q1 ~m1Þ
ðq4 ~m4 þ q3 ~m3ÞTðq2 ~m2 � q1 ~m1Þ

;

R ¼ q2 ~m2 � q1 ~m1

kq2 ~m2 � q1 ~m1k
; e2;

q2 ~m2 � q1 ~m1

kq2 ~m2 � q1 ~m1k

� �
� e2

	 

:

where

e2 ¼
rðq4 ~m4 þ q3 ~m3Þ � ðq2 ~m2 þ q1 ~m1Þ
krðq4 ~m4 þ q3 ~m3Þ � ðq2 ~m2 þ q1 ~m1Þk

:

Proof. Assume the middle points of the line segments X1X2

and X3X4 be X12 and X34 respectively. Then under the

object coordinate system in Fig. 2, e2¼X12X34

��!
=kX12X34

��!
k

and e3 = e1 · e2 since X12X34

��!
?X1X2

��!
.

From Eqs. (7) and (8), we have

X12 ¼
X1 þ X2

2
¼ d12ðq2 ~m2 þ q1 ~m1Þ

2kðq4 ~m4 � q3 ~m3Þk
;

X34 ¼
X3 þ X4

2
¼ rd12ðq4 ~m4 þ q3 ~m3Þ

2kðq4 ~m4 � q3 ~m3Þk
:

From X12X34 ? X1X2, we have ðrðq4 ~m4 þ q3 ~m3Þ�
ðq2 ~m2 þ q1 ~m1ÞÞTðq2 ~m2 � q1 ~m1Þ ¼ 0. Then,

r ¼ kX4 � X3k
kX2 � X1k

¼ ðq2 ~m2 þ q1 ~m1ÞTðq2 ~m2 � q1 ~m1Þ
ðq4 ~m4 þ q3 ~m3ÞTðq2 ~m2 � q1 ~m1Þ

:

Hence,

e2 ¼
rðq4 ~m4 þ q3 ~m3Þ � ðq2 ~m2 þ q1 ~m1Þ
krðq4 ~m4 þ q3 ~m3Þ � ðq2 ~m2 þ q1 ~m1Þk

;

R ¼ q2 ~m2 � q1 ~m1

kq2 ~m2 � q1 ~m1k
; e2;

q2 ~m2 � q1 ~m1

kq2 ~m2 � q1 ~m1k

� �
� e2

	 

: �
4. Plane measurement

Proposition 5. Assume that the image of a trapezium {Xj} is

f~mjg, and the lengths of the two parallel sides, d12 and d34,

are known. Then we have
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(1) If the image of a point X on the trapezium plane is ~m,

under the camera coordinate system,
X ¼ 1

~mTP
~m: ð15Þ
(2) If the images of two points X, X 0 on the trapezium plane
are ~m; ~m0, the distance between X and X 0 is� �

kX � X 0k ¼ 1

~mTP
~m� 1

~m0TP
~m0

��� ���: ð16Þ
(3) If the images of two lines L, L 0 on the trapezium plane

are ~l;~l 0, the angle between L and L 0 is
cos / ¼ ð
~l 0 �PÞTð~l �PÞ
k~l 0 �Pk � k~l �Pk

: ð17Þ
(4) If the images of two parallel lines L, L 0 on the trape-

zium plane are ~l;~l 0, the distance between them is
d ¼ 1

~mTP
~m� 1

~m0TP
~m0

����
���� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� cos2 h
p

; ð18Þ

where ~m 2 ~l, ~m0 2 ~l 0, cos h ¼ ð~m�~m0�PÞT ð~l�PÞ
k~m�~m0�Pk�k~l�Pk.
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Fig. 3. Simulated result. (a) Rotation error; (b) translati
Proof

(1) X is the intersecting point of the line XðsÞ ¼ s ~m with
the plane XTP = 1, then s ¼ 1

~mTP. Thus, X ¼ 1
~mTP ~m.

(2) By Eq. (15), Eq. (16) holds.
(3) Since we use the normalized coordinate on the image

plane, the vector P is the coordinate of the vanishing
line of the trapezium plane, i.e., the image of the
infinite line on the trapezium plane. And thus, the
vanishing points of lines L, L 0 are l · P, l 0 · P respec-
tively. Hence, the angle between the two lines L, L 0 is:

cos / ¼ ð~l 0�PÞTð~l�PÞ
k~l 0�Pk�k~l�Pk

.

(4) Let ~m 2 ~l; ~m0 2 ~l 0. Then, they are the images of two
points X 2 L and X 0 2 L 0 respectively. Let h be the
angle between two lines XX 0 and L. By Eq. (17),
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cos h ¼ ð~m� ~m0 �PÞTð~l �PÞ
jj~m� ~m0 �Pjj � jj~l �Pjj

:

Hence, by Eq. (16), we obtain the distance between L
and L 0:
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r; (c) depth error and (d) measurement error.



Fig. 5.
two no

228 F. Duan et al. / Pattern Recognition Letters 29 (2008) 223–231
d ¼kX�X 0k � sinh¼ 1

~mTP
~m� 1

~m0TP
~m0

����
���� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi1� cos2 h
p

:

Corollary 2. If the length of one side of a parallelogram is

known, from its image we can compute the length of the other

side, the distances from an arbitrary point on the parallelo-

gram plane to the camera center, and other metrical quanti-

ties on the parallelogram plane.
5. Degenerations of the system

Since all conclusions in this paper are deduced from
Proposition 2, we only discuss the degeneration of Propo-
sition 2.

From Eqs. (5) and (6), we know the system will degen-
erate if and only if kq4 ~m4 � q3 ~m3k ¼ 0 or the matrix
M ¼ �~m1 ~m2 ~m3½ � is not reversible.

In the first case, we assume the matrix M is reversible.
From ½q1; q2; q3�

T ¼ ½�~m1; ~m2; ~m3��1 ~m4, we have kq4 ~m4�
q3 ~m3k ¼ kq2 ~m2 � q1 ~m1k.

Since kq4 ~m4 � q3 ~m3k ¼ 0, we have

q4 ~m4 ¼ q3 ~m3;

q2 ~m2 ¼ q1 ~m1:
Fig. 4. Images of the

Images of the car and the estimated result for each pose. D1, D2, D3, D
n-parallel sides, D5 and D6, are 67 cm.
However, it contradicts the condition that the matrix M is
reversible. Therefore, the first case is impossible if the ma-
trix M is reversible.

In the second case, the three image points m1, m2 and m3

are collinear due to the matrix M is not reversible. It means
that the three 3D points X1, X2 and X3 are coplanar with
the camera center.

In conclusion, the system degenerates only when the
plane defined by the trapezium passes through the camera
center.

6. Experimental results

The presented algorithms have been experimented both
on simulated and real data.

6.1. Synthetic data

During the simulations, the camera’s setting is
(f,af, s,u0,v0) = (1500, 1200,0,512,512), and the image size
is 1024 · 1024. To study the dependence on noise level,
we vary the Gaussian noise from r = 0 to 4. For each noise
level, we generate 1000 random poses. For each pose, four
vertices of a trapezium are generated randomly, and 30
random points on the trapezium plane are also generated.
The Gaussian image noise is added to each image point
of the 30 points and the trapezium vertices.
calibration board.

4 are the recovered depths of the trapezium vertexes. The real lengths of the



Fig. 6. Images of the face and the estimated rotational parameters for each pose.

Table 2
Relative error for the test result in Table 1

Rotation Translation D1 D2 D3

1 0.0138 0.0071 0.00005 0.0016 0.0065
2 0.0049 0.0134 0.00002 0.0019 0.0047
3 0.0030 0.0095 0.0031 0.0028 0.0081
4 0.0053 0.0105 0.0031 0.0022 0.0053
5 0.0105 0.0074 0.0022 0.0084 0.0045
6 0.0049 0.0099 0.0019 0.0023 0.0035
Mean 0.0071 0.0096 0.0017 0.0032 0.0054
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For pose estimation, we compare our approach (referred
to as TP) to the linear algorithm (NPL) proposed in (Ansar
and Daniilidis, 2003). In NPL, the distance between each
two vertices must be given. The depth of each vertex to
camera center and the projection matrix of each pose are
estimated. We report the relative error for rotation, trans-
lation and the depth estimation. Each rotation matrix is
represented as a Rodrigue vector. The relative error is com-
puted as kvr � vk/kvk, where vr is the recovered value, and v
is the real value. The test results are shown in Fig. 3a–c,
where, the value at each noise level is the mean over 1000
trails. From the figures, we can see that the proposed
approach has a good performance, and the errors degrade
gracefully with the increasing of the noise level. The pro-
posed method outperforms NPL.

For plane measurement, our approach is compared to
the key point based method in (Criminisi, 2001; Criminis
et al., 1999a). In the key point based method, the 3D–2D
correspondence of the four vertices must be given. For each
pose, 30 pairs of points are selected randomly from the 30
points, and the distance of each pair is computed using the
two methods. The mean relative error of these distances is
shown in Fig. 3d. From the figure, we can see that the key
point based method is better. Since the trapezium plane in
3D space is unknown in our method but known in the key
Table 1
The test result for calibration board

Method Rotation Trans

1 Standard 1.97 1.82 0.50 �55.0
Our 1.98 1.82 0.53 �54.8

2 Standard �2.14 �2.19 0.11 �84.9
Our �2.14 �2.19 0.10 �84.7

3 Standard 1.98 1.83 0.51 �44.4
Our 1.97 1.83 0.51 �44.1

4 Standard 2.12 2.04 0.22 �62.5
Our 2.11 2.03 0.23 �62.3

5 Standard �2.08 �2.19 0.24 �60.2
Our �2.08 �2.19 0.22 �60.3

6 Standard 2.11 2.08 0.15 �59.1
Our 2.11 2.08 0.14 �59.0
point based method, the error of 3D reconstruction of the
points is higher in our method, which affects the distance
measurement.
6.2. Real images

All images are taken by a Nikon Coolpix 990 digital
camera with resolution of 1024 · 768. We take images for
a car, a calibration board and one person’s face from six
camera poses respectively. Fig. 4 shows the image set of
the calibration board, Fig. 5 the car, and Fig. 6 the face.
The used trapezium is plotted using white lines on the first
image of each image set. The image points of the four ver-
tices on each image are located in a manual way. We adopt
lation D1 D2 D3

5 �27.57 277.16 170.00 63.25 117.04
0 �27.28 279.14 170.09 63.15 116.29

6 �46.73 323.78 170.00 78.10 164.01
8 �46.49 328.29 169.98 77.96 164.78

6 �43.68 383.35 170.00 101.98 152.64
6 �43.48 387.04 170.52 102.26 153.88

8 �42.19 377.02 170.00 70.71 152.64
6 �41.95 381.03 170.53 70.86 153.45

7 �42.59 414.41 170.00 90.00 121.66
3 �42.21 417.51 169.63 90.75 122.21

3 �39.69 475.93 170.00 130.00 156.52
7 �39.30 480.69 169.67 129.70 155.98



Fig. 7. Two images of the measurement.

Table 3
The measurement result

Line segment S1 S2 S3 S4 S5 S6 S7 S8

Real distance 40 120 80 60 100 75 100 175
Measured

distance
38.94 120.79 78.8 59.65 100.06 74.50 99.23 173.14

Relative
error %

2.65 0.66 1.50 0.58 0.06 0.67 0.77 1.06
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the camera calibration toolbox in (http://www.vision.cal-
tech.edu/bouguetj/) for camera calibration (Zhang, 1991),
where, the six images of the calibration board are used.

6.2.1. Experiment for calibration board

The lengths of two sides of the rectangle on the calibra-
tion board are 100 and 170 cm. For each pose, we recover
the rotation and translation of the camera, the length (D1)
of the other side of the rectangle. In addition, we pick up
two pairs of random image points on each image to esti-
mate their space distances (D2, D3). The test results are
shown in Table 1. The calibration results using the camera
calibration toolbox in (http://www.vision.caltech.edu/
bouguetj/) are also shown in Table 1 (hereafter referred
to as the standard value). For each pose in Table 1, the
upper line shows the standard value, and the lower line
shows the recovered value. Table 2 shows the relative error
of the recovered pose and distances. From the test results,
we can see the recovered distances are very close to the real
values. The relative rotation errors of the poses 1 and 5, the
relative translation errors of the poses 2 and 4 exceed 1%.
However, we cannot conclude that the pose estimation
results are not good since the standard values are also esti-
mated values. Overall, the proposed approach performs
well, and the two estimated results are very close.

6.2.2. Experiment for car

The lengths of sides of the trapezium on the car are mea-
sured manually with a scale in centimeter. The lengths of
the parallel sides are 110 and 120 cm, and the length of
the other sides is 67 cm. In Fig. 5, the recovered depths
of the trapezium vertexes (D1, D2, D3, D4) and lengths
of the two non-parallel sides (D5, D6) are shown under
each image of the car for that pose. From Fig. 5, we can
see that the result of the recovered depths is roughly coin-
cident with the real scene and the precision of the estimated
lengths is acceptable according to the measurement scale
and the measurement error of the image points.

6.2.3. Experiment for face

We estimate the rotational parameters, slant, tilt and
roll, by Proposition 4. The vertices of the isosceles trape-
zium are the outer corners of the two eyes and the mouth.
In Fig. 6, the estimated parameters are shown under each
image of the face for that pose. Although the true poses
of the input faces are not available, we can see from
Fig. 6 that the estimated parameters can approximately
reflect the poses. However, we cannot expect the results
are accurate due to a rough localization of the control
points.

6.2.4. Experiment for plane measurement

Fig. 7 shows two images of the test set, where, the first
building is Jade Palace Restaurant, and the second one is
the satellite mansion. The used rectangles and line segments
are plotted in the images. We take the window’s size as ref-
erence. The real lengths of the line segments are computed
according to the reference sizes. The measurement results
are shown in Table 3. From the test results, we can learn
that the precision of the measurements is acceptable.

7. Conclusions

In the paper, we introduce a new affine invariant of tra-
pezia and deduce the projection of trapezia from this
invariant. Using the projection of trapezia, we present a
very simple solution of pose determination and plane mea-
surement. For pose determination, if the lengths of the two
parallel sides of a trapezium are known, we can obtain the
analytical solutions of the distance from each trapezium
vertex to the camera center, the camera’s position and ori-
entation. For plane measurement, under the same condi-
tion we can obtain the analytical solutions of the distance
between any two points, the angle of any two lines and
other metrical quantities on the trapezium plane. Experi-
ments on simulated and real images show the proposed
approach is robust and accurate.

http://www.vision.caltech.edu/bouguetj/
http://www.vision.caltech.edu/bouguetj/
http://www.vision.caltech.edu/bouguetj/
http://www.vision.caltech.edu/bouguetj/
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