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ABSTRACT

We present a new method of computing invariants in videos
captured from different views to achieve view-invariant action
recognition. To avoid the constraints of collinearity or copla-
narity of image points for constructing invariants, we consider
several neighboring frames to compute cross ratios, namely
cross ratios across frames (𝐶𝑅𝐴𝐹 ), as our invariant represen-
tation of action. For every five points sampled with different
intervals from the trajectories of action, we construct a pair of
cross ratios (𝐶𝑅s). Afterwards, we transform the 𝐶𝑅s to his-
tograms as the feature vectors for classification. Experimental
results demonstrate that the proposed method outperforms the
state-of-the-art methods in effectiveness and stability.

Index Terms— view-invariance, action recognition, cross
ratio

1. INTRODUCTION

Human action recognition has gained much attention in the
past few years in the applications like visual surveillance,
human-computer interfaces, video annotation, content based
video retrieval, etc. However, applications remain limited due
to difficulties in real circumstances.

View-invariance is a challenging problem in human action
recognition. Several kinds of methods concerning that prob-
lem have been proposed recently. Firstly, 3D reconstruction
techniques could provide the most reliable view independent
representation of actions. In [1] and [2], images recorded by
multiple calibrated cameras are projected back to 3D visual
hulls of the body in different poses. But the high cost of
this method limits its practical applications. Secondly, the
epipolar geometric relations in multiple view geometry lead
to some constraints between image points in different views.
For example, [3] uses fundamental ratios, which are the ratios
of fundamental matrix and proved to be invariant to view-
point, to represent pose transitions in a model based method.
The problem is that manually labeling of joints of the human
body is required to find those triplets of points used for ho-
mography calculation. Thirdly, learning methods map mo-
tion representation to viewpoint, like [4, 5]. These methods
do not need to extract view-invariant features from images.

Nevertheless, they implicitly assume the mapping should sat-
isfy the underlying models with empirical priors and are not
clear of which aspect of their representation of action ac-
counts for the output. Lastly, people also try to construct
invariants from images. [6] applies a spatio-temporal cur-
vature of 2D trajectory of hand to capture dramatic changes
of motion. The curvature is view-invariant but with the sec-
ond derivative, which degrades signal-to-noise ratio unless
the curve is smooth enough. The method in [7] assumes that
there is a moment in an action when some of the joints of the
body are coplanar, namely canonical pose. The application is
also limited since it’s hard to detect such a canonical pose in
videos automatically.

Invariants are usually used for object recognition to tackle
the problem of projective distortion caused by viewpoint vari-
ations. In view-invariant action recognition, people are more
inclined to model based recognition methods. These methods
evaluate the fitness between image points and the predefined
3D models. But it’s difficult to detect such image points that
satisfy the specific geometric configuration required to get the
desired invariants. For example, to get a cross ratio as an in-
variant, image points are required to be collinear or coplanar
in the original 3D space before projection.

Fig. 1. The sets of four points with identical cross ratio under
projective transformations

Cross ratio is the most common invariants. As is shown
in Fig.1, the sets of four collinear points with the same per-
mutation lying on different planes form cross ratios with the
same value.

To avoid the constraints of collinearity or coplanarity of
image points when constructing invariants from an image,
we calculate invariants across neighboring frames, rather than
from a single image.



We generalize the cross ratio of four collinear points to
cross ratios across frames (𝐶𝑅𝐴𝐹 ) using five neighboring
coplanar points sampled from trajectories of actions. Under
the assumption of coplanarity of neighboring points on the
trajectory, the proposed method does not need human body
model and manually labeling of image points. Experimental
results show that our method outperforms others’ with high
effectiveness and stability.

The paper is organized as follows: In Section 2, we elab-
orate the algorithm of cross ratios across frames (𝐶𝑅𝐴𝐹 ).
Section 3 details empirical studies on public database and an-
alyzes the stability of 𝐶𝑅𝐴𝐹 . Finally, conclusions are made
in Section 4.

2. INVARIANTS ACROSS FRAMES

In our work, we assume trajectories of several key joints on
the body, like hand, foot or head, could be obtained by fea-
ture tracking techniques. Once we get trajectories from im-
age sequences, we could construct a pair of cross ratios for
every five points sampled from the trajectories. Afterwards,
pairs of cross ratios are transformed to histograms as the fea-
ture vectors in SVM classification. Detailed description of
our method is provided in the following subsections.

2.1. Cross ratios across frames

Geometric invariants capture invariant information of a geo-
metric configuration under a class of transformations. Group
theory gives us theoretical foundation for constructing invari-
ants [8]. In computer vision applications, we use invariants
as our view-invariant representation because such invariants
could be measured directly from images without knowing the
orientation and position of the camera.

For the difficulty of detecting groups of collinear points in
a single image, we construct invariants across frames, that’s
to say, we use several neighboring frames in a video to com-
pute invariants as our view-invariant representation. The only
assumption we should make is the coplanarity of neighboring
points on the trajectory.

Cross ratio is invariant to projective transformations. It is
defined as:

[𝑋1, 𝑋2, 𝑋3, 𝑋4] =
(𝑋1−𝑋3)(𝑋2−𝑋4)
(𝑋1−𝑋4)(𝑋2−𝑋3)

(1)

Here 𝑋1, 𝑋2, 𝑋3 and 𝑋4 represent a set of four collinear
points and the value of [𝑋1, 𝑋2, 𝑋3, 𝑋4] is preserved by pro-
jective transformations.

The precondition of collinearity makes the application of
cross ratio of four collinear points limited. So we make a gen-
eralization by constructing a pair of cross ratios in the same
way as in [8]. As illustrated in Fig.2, suppose we have got
a trajectory 𝑇 and there are five points (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5)
which are approximately coplanar, we use these 5 points on
the trajectory to generate two groups of four collinear points,
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Fig. 2. 5 points to construct a pair of cross ratio

(𝑋1, 𝑋2, 𝑃,𝑄) and (𝑋5, 𝑋4, 𝑃,𝑅). With the two groups of
collinear points, we compute their cross ratios respectively
and denote them as 𝐶𝑅1 and 𝐶𝑅2. Thus, we get the view-
invariant representation of these five points as follows:

𝑇 (𝑋1, 𝑋2, 𝑋3, 𝑋4, 𝑋5) 7→ 𝐼(𝐶𝑅1, 𝐶𝑅2) (2)

where the 𝐼(𝐶𝑅1, 𝐶𝑅2) denotes our view invariant represen-
tation of five trajectory points. The only precondition of this
generalization is the coplanarity of the five points. Empirical
tests in Section 3 show that precondition is satisfied in most
real cases.

Computing 𝐶𝑅1 and 𝐶𝑅2 is straightforward as long as
the coordinates of the five points on image plane are known.
Here we use formulae that have been proven in higher geom-
etry:

𝐶𝑅1(𝑋1, 𝑋2, 𝑃,𝑄) =

(∣𝑋1𝑋4∣+∣𝑋4𝑋5∣+∣𝑋5𝑋1∣)
(∣𝑋2𝑋4∣+∣𝑋4𝑋5∣+∣𝑋5𝑋2∣) ×

(∣𝑋2𝑋4∣+∣𝑋4𝑋3∣+∣𝑋3𝑋2∣)
(∣𝑋1𝑋4∣+∣𝑋4𝑋3∣+∣𝑋3𝑋1∣) (3)

𝐶𝑅2(𝑋5, 𝑋4, 𝑃,𝑅) =

(∣𝑋5𝑋2∣+∣𝑋2𝑋1∣+∣𝑋1𝑋5∣)
(∣𝑋5𝑋2∣+∣𝑋2𝑋3∣+∣𝑋3𝑋5∣) ×

(∣𝑋4𝑋2∣+∣𝑋2𝑋3∣+∣𝑋3𝑋4∣)
(∣𝑋4𝑋2∣+∣𝑋2𝑋1∣+∣𝑋1𝑋4∣) (4)

where ∣𝑋𝑖𝑋𝑗 ∣ is the determinant of the 2× 2 matrix [𝑋𝑖𝑋𝑗 ].
Degenerated groups of points might appear while com-

puting 𝐶𝑅s. For example, the line defined by 𝑋1 and 𝑋2 is
parallel to the line defined by 𝑋4 and 𝑋5, or 𝑋2, 𝑋3 and 𝑋4

are collinear. In these cases, we either assign a fixed num-
ber to 𝐶𝑅 relatively large or just ignore them. Since most
of the sampled points are in general position, the degenerated
groups do not affect the outputs of the algorithm.

2.2. 𝐶𝑅𝐴𝐹 histograms

For each trajectory, we get a sequence of pairs of cross ratios.
These 𝐶𝑅s are voted into bins to form a histogram as the rep-
resentation of the feature vector for classification. In detail,
the value of each histogram bin is defined as:

𝐻(𝑖) = 1
𝐶

∑𝐶
𝑖=1 𝑋𝑖,

𝑎𝑛𝑑 𝑋𝑖 =

{
1 if 𝐶𝑅𝑖 ∈ [𝑏(𝑖), 𝑏(𝑖+ 1))
0 else (5)



where 𝐶 is the count of 𝐶𝑅s, and 𝑏(𝑖) and 𝑏(𝑖 + 1) corre-
spond to the lower-bound and upper-bound of the 𝑖𝑡ℎ bin of
the histogram.

3. EXPERIMENTAL RESULTS AND ANALYSIS

In our experiment, we use CMU Motion Capture (Mocap)
Database1 to get trajectories. MoCap database records 3D
position information captured from sensors on the body. After
projection onto image planes, we could get 2D trajectories in
different views.

To make a comparison with the state of the art, our exper-
iment is conducted under the same condition with [3].
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Fig. 3. Camera position distribution

In the projection process, there are seventeen synthesized
cameras uniformly distributed around a hemisphere. The dis-
tribution of the cameras is depicted in Fig.3. All the actions
are performed around the center within the hemisphere. We
project 3D data onto images of each viewpoint with the focal
length randomly chosen in a range of 1000±300mm. Here is
an example of projected trajectories of hand shown in Fig.4,
which illustrates the action of jump in each viewpoint with
varying appearance caused by projective distortions.

 

Fig. 4. The projected trajectories of hand of each viewpoint

We select 5 classes of actions, climb, jump, run, swing
and walk, from the database to make our tests. For each ac-
tion, we get trajectories of head, left hand and left foot of the

1CMU MoCap database: mocap.cs.cmu.edu

subject. For every neighboring five points on the trajectory,
we compute a pair of 𝐶𝑅s by Eq.3 and Eq.4. We transform
the 𝐶𝑅s of each action to histograms as the view-invariant
features of the action.

3.1. Recognition results

After projection, We get 200 trajectories of each viewpoint,
specifically 12 sequences for climb, 57 sequences for jump,
41 sequences for run, 10 sequences for swing and 80 sequences
for walk. The data provided is unbalanced, so weighted train-
ing strategy is applied in the training process. We use support
vector machine (SVM) as the classifier. In SVM training, the
kernel parameters are optimized by way of grid search. We
train one model for each viewpoint and test it on the other
viewpoints. The output of each viewpoint is the one with the
highest score.
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Fig. 5. Recognition rate in different views

The performance is shown in Fig.5. Though the recog-
nition rate of some views is a little lower than that in [3],
the average accuracy is about 92.38%, which is much higher
compared to 81.60% in [3], demonstrating high stability over
the seventeen viewpoints. Besides, unlike only 15 samples
were tested in each viewpoint in [3], we used 200 samples for
testing in each view, so our output is more persuasive than [3].

In addition, we give the accuracy of each model in each
viewpoint in Table 1. Each model in the first column is trained
under its corresponding viewpoint and tested under the other
viewpoints.

The recognition rate of each model is quite stable in each
viewpoint, indicating high robustness to varying viewpoints.

3.2. Stability of 𝐶𝑅𝐴𝐹 over different sampling intervals

Theoretically, cross ratios of five coplanar points in general
position remain the same under projective transformations.

Since we have assumed that the five points used to com-
pute 𝐶𝑅s are approximately coplanar, we evaluate the vari-
ance of the 𝐶𝑅s of groups of neighboring five points at differ-
ent sampling rate. The variance and mean curve with respect
to different sampling rate is shown in Fig.6.

The mean value of the 𝐶𝑅s is around 0.6. As we can
see in the figure, the variance is negligible compared to the
mean value when the sampling rate is above 25Hz, which is



Table 1. Recognition rate in each view of each model
View1 View2 View3 View4 View5 View6 View7 View8 View9 View10 View11 View12 View13 View14 View15 View16 View17 Average

Model 1 1 0.852 0.82 0.809 0.948 0.841 0.811 0.826 0.887 0.813 0.794 0.824 0.878 0.844 0.874 0.837 0.865 0.854294118
Model 2 0.854 1 0.913 0.872 0.846 0.937 0.9 0.9 0.857 0.898 0.883 0.9 0.859 0.813 0.865 0.781 0.844 0.877764706
Model 3 0.805 0.909 1 0.909 0.787 0.93 0.956 0.917 0.822 0.896 0.88 0.893 0.859 0.768 0.852 0.751 0.841 0.869117647
Model 4 0.829 0.915 0.932 1 0.831 0.909 0.926 0.945 0.846 0.911 0.893 0.902 0.852 0.79 0.861 0.781 0.835 0.879882353
Model 5 0.922 0.852 0.807 0.824 1 0.824 0.816 0.807 0.902 0.829 0.796 0.816 0.874 0.887 0.876 0.872 0.854 0.856352941
Model 6 0.824 0.937 0.924 0.889 0.818 1 0.919 0.911 0.865 0.904 0.891 0.902 0.844 0.781 0.85 0.787 0.848 0.876117647
Model 7 0.813 0.904 0.939 0.893 0.8 0.937 1 0.924 0.839 0.896 0.893 0.919 0.861 0.768 0.82 0.766 0.854 0.872117647
Model 8 0.818 0.911 0.913 0.941 0.813 0.906 0.932 1 0.85 0.891 0.896 0.904 0.865 0.772 0.848 0.766 0.837 0.874294118
Model 9 0.872 0.816 0.811 0.826 0.865 0.82 0.818 0.816 1 0.846 0.82 0.844 0.891 0.796 0.824 0.82 0.904 0.846411765
Model 10 0.813 0.88 0.876 0.852 0.796 0.88 0.859 0.861 0.867 1 0.909 0.906 0.861 0.777 0.816 0.748 0.867 0.856941176
Model 11 0.803 0.867 0.885 0.872 0.79 0.911 0.893 0.891 0.857 0.926 1 0.924 0.859 0.753 0.803 0.742 0.857 0.860764706
Model 12 0.79 0.854 0.872 0.861 0.794 0.876 0.861 0.859 0.865 0.898 0.913 1 0.88 0.757 0.796 0.746 0.852 0.851411765
Model 13 0.865 0.826 0.82 0.857 0.846 0.841 0.844 0.829 0.874 0.863 0.857 0.861 1 0.798 0.835 0.783 0.891 0.852352941
Model 14 0.896 0.835 0.757 0.816 0.911 0.79 0.744 0.77 0.848 0.755 0.727 0.753 0.852 1 0.915 0.887 0.807 0.827235294
Model 15 0.896 0.898 0.857 0.885 0.891 0.85 0.846 0.844 0.872 0.841 0.826 0.857 0.88 0.896 1 0.883 0.848 0.874705882
Model 16 0.896 0.831 0.807 0.816 0.902 0.813 0.777 0.781 0.867 0.77 0.761 0.787 0.859 0.904 0.926 1 0.844 0.843588235
Model 17 0.839 0.796 0.79 0.813 0.841 0.813 0.8 0.805 0.9 0.835 0.837 0.857 0.911 0.79 0.816 0.794 1 0.837470588
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Fig. 6. Mean and variance of 𝐶𝑅s in different viewpoints

to say, the calculated 𝐶𝑅 is stable as long as the frame rate is
above 25Hz, indicating our approximate coplanar assumption
is acceptable under real circumstances.

4. CONCLUSIONS

In this paper, we proposed a method of computing invariants
across frames. We made generalizations to cross ratio of four
collinear points so that it could be applied to view-invariant
representation of actions. In our stability evaluation, points
across frames with different sampling intervals produce in-
variants with tolerable variance in different viewpoints. In
classification, the invariants show high robustness to varying
viewpoints and sampling intervals.
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