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ABSTRACT

Great stride has been made in psychological research about
primitives of visual perception, which is important to com-
puter vision and image processing. In this paper, we pro-
pose a computational model to imitate the primitives of visual
perception based on the pyschological theory of topological
perceptual organization. First, we adopt geodesic distance
based descriptor to describe an independent topological struc-
ture. Then, we consider the spatial relationship of two inde-
pendent structures. Experiments on structures classification
demonstrates that the propose model is consistent with the
psychological theory. Further experiments on patches clus-
tering prove that our approach can be used to enhance other
algorithms.

Index Terms— visual perception, computational model,
descriptor.

1. INTRODUCTION

What are the primitives of visual perception? It has been de-
bated for decades in the field of visual perception. Basically,
there are two schools of thoughts: the early feature-analysis
theory and the early holistic registration theory.

One representative of the early feature-analysis theory is
Treisman’s feature integration theory [7], an significant psy-
chological model dominant in visual attention. According to
this theory, in the first step of visual processing, visual fea-
tures are processed and represented with separate ”feature
maps”, which are later integrated in a ”saliency map” in or-
der to direct attention to the most conspicuous areas. An-
other representative is Marr’s primal sketch theory [5], which
claims that the primitives of visual information representa-
tion are simple components of forms and their local geometric
properties, e.g., line segments with slopes. Marr’s theoryhas
acted as the foundation of most computer vision algorithms
for the past 30 years.
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Fig. 1. An example contradicting with the early feature-
analysis theory.

The early holistic registration theory, however, considers
the visual perception as a global-to-local process. It is sup-
ported by the Gestalt psychology of perceptual organization
which argues that the whole is more than the sum of its parts,
and the operational principle of the brain is holistic, parallel,
and analog, with self-organizing tendencies. Fig. 1 shows a
classic example where a dalmatian dog sniffing the ground in
the shade of overhanging trees. The dog can not be recog-
nized by first identifying its parts (feet, ears, nose, tail,etc.),
and then inferring the dog from those component parts. In-
stead, the dog is perceived as a whole, all at once.

Lin Chen’s theory of topological perceptual organization
[1, 2] is a view inherited from the early holistic registration
theory and Gestalt psychology. It assumes that wholes are
coded prior to their separable properties or parts. Chen’s
theory is based on the core idea that perceptual organization
should be understood in the perspective of transformation and
perception of invariance over transformation. Furthermore,
the topological transformation [2] is proved to be an opti-
mal choice in his theory which is defined as a continuous and
one-to-one transformation to change the shape of an object
without changing the split or adjacent relation of any pairsof
points, e.g., a disc smoothly changing to a solid ellipse.

Chen’s theory about visual perception is supported by
Gestalt-style experiments as shown in Fig. 2. In these exper-
iments, subjects are requested to judge whether two images
are different after a short glimpse. The high correct response
means that two shapes are easily distinguished, i.e., topo-
logically different. The experimental results are consistent



with their prediction that it is hard for subjects to differentiate
topologically equivalent structures. Therefore it is concluded
that topological structures are the fundamental components
of the visual vocabulary. Further, Chen’s theory is supported
by modern neural imaging evidences [9] and physiological
experiments on bees’ visual perception [3].

Fig. 2. Illustration of the psychological experiments in Lin
Chen’s work. Subjects are requested to differentiate the pair
of images in each column. See text for details.

In this paper, we propose a computational model to em-
ulate Chen’s theory of topological perceptual organization.
Experiments on structures classification demonstrate thatthe
propose method outperforms classic traditional descriptors.
Further experiments on patches clustering prove that our ap-
proach can be used to enhance other algorithms.

2. COMPUTATIONAL MODEL

Chen’s theory has opened new lines of research that is worthy
of attention from not only visual perception but other related
fields, e.g., computer vision and image processing. But it does
not define the mathematical form to describe the topological
properties. The most important contribution in this paper is
the proposed computational model and its successful applica-
tions in computer vision.

According to Chen’s theoretical analysis [2], the topolog-
ical properties include three important aspects: the connectiv-
ity, the holes and the spatial relationship between independent
topological structures. To build the computational model,we
firstly define a topology space. Afterward, we propose an ef-
fective method to quantitatively depict the spatial relationship
between two independent topological structures.

In practical image processing, we utilize the distance be-
tween pairs of pixels to describe the topological structureof
a part of an object. The Euclidean measure is apparently not
a good candidate because a gourp of pixels can construct dif-
ferent shapes which depends on the connectivity relationship
among them. Intuitively, the geodesic distance, or the shortest
path, is a better choice to represent the connectivity and the
holes.

Besides, to integrate scale information, we introduce the
concept of tolerance space [8, 2]. In detail, points in a toler-
ance need not be restricted to fixed dots but movable in the

tolerance to generate perceptual organization. That is, two
points are connective only if they are in a specific tolerance.

Based on the above analysis, we define the distance be-
tween two pixels as:

d(i, j) = g(d∗(i, j)), (1)

d∗(i, j) =

{

do(i, j), if do(i, j) < ξ
∞, otherwise

(2)

whereg(·) denotes the operation of calculating geodesic dis-
tance,d(i, j) is the topological distance between pixelsi and
j, do(i, j) is the spatial Euclidean distance,ξ is the tolerance.

After defining the topology space, we construct a his-
togram to describe the topological structure of a part in an
object. In detail, we utilize the quotient betweend(i, j) and
d∗(i, j) as the vote to construct the histogram, which is the
feature vector of an independent topological structure.

The above defined histogram can describe an independent
topological structure. But they can not reflect the relation-
ship of two independent topological structures. As shown in
Fig. 3, images in (a) and (b) are topologically different, show-
ing the inside and outside relationship, respectively. Buttheir
quotient distance histograms are similar. Therefore we also
consider the spatial relationship between independent topo-
logical structures.

Fig. 3. An example of the inside and the outside relationship.

According to Chen’s theory [2], although the transforma-
tions of the shape occur in the production of illusory con-
junctions, two independent topological constraints (the in-
side/outside relationship), remain invariant. We consider that
the degree of containment is the key factors to decide the rela-
tionship of independent topological structures. The procedure
is shown in Fig. 4. Firstly, we draw a group of lines starting
from the center of the gravity of one structure, at an equal
interval of a predefined angle. Then we count how many
lines are across with the other structure. The counted num-
ber of crossing lines reflects the degree of a structure contain-
ing the other one. Finally, we augment the quotient distance
histogram by the number of crossing lines. The augmented
histogram is the final representation of the proposed compu-
tational model.



Fig. 4. Illustration of computing the degree of one structure
containing the other structure. See the text for details.

3. EMPIRICAL STUDIES

To justify the effectiveness of the proposed computational
model, we design two experiments. In the first experiment,
we select six groups of graphs, and use the augmented his-
togram as the feature vector for classification. The benchmark
is the SIFT descriptor [4]. In the other experiment, we apply
the proposed model for patches clustering.

3.1. Structure Classification

Fig. 5. Examples of artificial images. The histogram in each
row is the mean augmented histogram corresponding to the
images of the row.

In this experiment, we first test the discriminative abil-
ity of the augmented histogram on different topological struc-
tures. Fig. 5 shows some examples. We design six classes
of topological structures. From top to bottom in Fig. 5, they
are the round, the single ring, the double rings, the cross, the
double holes and the parallel. There are about 30 images
for each class. Note that the round images and the rectan-
gle images share an identical topological structure, thus they
are both called the round for convenience. Artificial shapes
in the same row share an identical topological structure and
their mean augmented histograms are almost equivalent. We
compare the augmented histogram with the SIFT descriptor
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Fig. 6. (Please view in color) Performance of our method
(augmented quotient distance) in preserving the geometricna-
ture of the topological structure manifold. Each color corre-
spond to a class of topological structures shown in Fig. 5.
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Fig. 7. (Please view in color) Performance of SIFT descriptor
in preserving the geometric nature of the topological struc-
ture manifold. Each color correspond to a class of topological
structures shown in Fig. 5.

[4]. To implement SIFT descriptor, we deem each image as
a patch and use 8 directions for histogram calculation. Then
the standard Isomap [6] algorithm is applied for dimensional-
ity reduction to intuitively compare their ability of preserving
topological properties as shown in Fig. 6 and Fig. 7.

Our approach greatly outperforms SIFT descriptor. In
Fig. 6, different topological structures are effectively differen-
tiated by our approach. In Fig. 7, some different topological
structures of artificial images are mixed together by SIFT de-
scriptor. The experimental results are consistent with Chen’s
theoretical analysis and experimental results, and prove the
effectiveness of the proposed method in classifying various



topological structures.

3.2. Clustering for Image Patches

Currently, the proposed model can be applied to describe the
topological structure of artificial graphes. It is also possible
to use the proposed computational model for real images.

Fig. 8 illustrates the patch selection and clustering proce-
dure. There are 36 original image patches. In the first stage,
we cluster all the original image patches. Patches in the first
column are preserved cluster centers. In the second stage,
only the above three rows will be kept because patches in the
last three rows have no structure information. That is, these
patches are out of our definition of basic topological shapes.
The result of this procedure shows that meaningful patches
are selected and redundent patches are removed.

Fig. 8. Demonstration of patch clustering and selection pro-
cedure. The three patches in the red rectangle is the finally
preserved cluster centers. See the text for detail.

4. CONCLUSION

In this paper, we have first briefly outlined the psychologi-
cal research about primitives of visual perception and intro-
duced Lin Chen’s theory of topological perceptual organiza-
tion. Based on this theory, we have proposed a computational
model to describe the topological structure of a part of an
object. In particular, we consider the connectivity, the holes
and the spatial relationship between independent topological
structures. Experiments on structures classification and iamge
patches clustering demonstrates that the proposed model is
consistent with Chen’s psychological theory and can be ap-
plied to cluster and select meaningful image patches.
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