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Abstract. In this paper, a Bayesian method for face recognition is proposed
based on Markov Random Fields (MRF) modeling. Constraints on image fea-
tures as well as contextual relationships between them are explored and encoded
into a cost function derived based on a statistical model of MRF. Gabor wavelet
coefficients are used as the base features, and relationships between Gabor fea-
tures at different pixel locations are used to provide higher order contextual con-
straints. The posterior probability of matching configuration is derived based on
MRF modeling. Local search and discriminate analysis are used to evaluate lo-
cal matches, and a contextual constraint is applied to evaluate mutual matches
between local matches. The proposed MRF method provides a new perspective
for modeling the face recognition problem. Experiments demonstrate promising
results.
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1 Introduction

Relations between image features provides important constraints for image analysis
and face recognition. A face is seen as an array of pixel values. If we make an image
darker or brighter or perform some other nonlinear transformation such as changing the
lighting condition, the image is still a pattern of that particular face. However, if the
pixels are shuffled, the image no longer contains a face pattern, even if the individual
pixel values remain the same. This illustrates that contextual constraints between image
features play a more critical role than the pixel values themselves.

Markov random field (MRF) theory provides a convenient and consistent way for
modeling context-dependent constraints such as between image pixels and features de-
rived from pixels. This is achieved through characterizing mutual influences among
pixels and features using conditional MRF distributions. The practical use of MRF
models is largely ascribed to a theorem that states the equivalence between MRFs and
Gibbs distributions, as established by [1] and further developed by [2]. MRFs have been
widely employed to solve image procesing and computer vision problems [3–7].

Recently, researchers have started investigations of face recognition problems from
the MRF viewpoint. In [8], Qian and Huang presents a MRF-based method for face
? Stan Z. Li is the corresponding author.
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detection, where scale changes are dealt with by using image pyramid and orientation
changes are handled by rotating the image pyramid. In [9], Dass and Jain use MRF to
model the spatial distribution of pixel values for the face pattern. The MRF modeling
is further enhanced by finding the optimal permutation of pixels that maximizes the
discriminative power between face and nonface patterns [10]. Huang et al. [11] propose
a hybrid method for face recognition using MRF and belief propagation. A face image is
divided into non-overlapping patches, and the patches in the probe image are matched
to those in the gallery images, giving a person ID for each patch. The final decision
is made by voting IDs over patches. In [12], straight lines are extracted from a face
image. By attaching properties and binary relations to the straight lines, a face is then
represented as a graph. A partial matching is used to match two graphs and select the
best match.

In this paper, we propose a novel approach for modeling face recognition problems
using MRF and Bayesian statistics. Assuming that the face in an image has been prop-
erly normalized into a “canonical” frame, the following two issues are addressed: (1)
effective representation of a face pattern using image properties and their contextual
relations, and (2) matching with the image properties and their contextual relations.

The paper contains the following novel ideas. For issue (1), we explore mutual con-
straints between the images features in a neighborhood system, where the features used
are the Gabor wavelet coefficients. Relationships between Gabor features at different
pixel locations are used as contextual constraints. Discriminant analysis is performed
on the Gabor features to select most effective ones.

To solve problem (2), MRF is used to constrain matching configurations. The pos-
terior probability of MRF is formulated as the criterion function for the evaluation of
MRF configurations for matching between features in the gallery and probe. The best
matching is defined as the maximum a posteriori (MAP) solution. The MAP solution is
the best match between the two faces in terms not only image features but also relation-
ships between them.

The rest of the paper is organized as follows: Section 2 introduces basic MRF con-
cepts and Gabor wavelets as base features. Section 3 presents the use of MRF modeling
to constrain matching configurations and formulates the posterior probability function
for face matching. Experimental results are presented in Section 4 and in Section 5, we
conclude the paper.

2 Background

2.1 MRF Modeling

The problem of face recognition may be posed as (1) finding correspondence between
features in gallery and probe, which can be posed as a labeling problem; (2) comput-
ing the score of matching (or distance) between the two, which may be posed as a
probability estimation problem, and (3) making decision based on the distances. Here
we introduce the notions for labeling problems and how MRF could constrain labeling
configurations with contextual relations.

Assume that a face is divided into a number of regions for both probe and gallery
faces. Here a region is centered at a pixel location, and some regions may overlap each
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other. Index the m regions in the probe by the set of sites S = {1, . . . ,m}, and L regions
in the probe by the set of labels L = {1, . . . ,L}.

A labeling is then considered as realization f = { f1, . . . , fm} of a random field de-
noted F = {F1, . . . ,Fm}. There, a random variable Fi takes a value fi in L , for which f
is called a configuration of F , corresponding to a realization of the field.

The random variables F may be related to one another contextually via a neigh-
borhood system N = {Ni | ∀i ∈ S } where Ni is the set of sites neighboring i. The
neighboring relationship can be defined to include sites with the Euclidean distance
from i.

A neighborhood system specifies a collection of cliques. A clique consists either
of a single site c = {i}, or of a pair of neighboring sites c = {i, i′}. The collections of
single-site and pair-site are denoted by C1 andC2, respectively.

F is said to be an MRF on S with respect to N if and only if P( f ) > 0 (positivity),
and P( fi | fS−{i}) = P( fi | fNi) (Markovianity) are satisfied [1], where S −{i} is
the set difference, fS−{i} denotes the set of labels at the sites in S −{i} and fNi =
{ fi′ | i′ ∈Ni} stands for the set of labels at the sites neighboring i. The Markovianity
depicts the local characteristics of F .

The joint probability of a Markov random fields obeys a Gibbs distribution, which
takes the following form

P( f ) = Z−1× e−
1
T U( f ) (1)

where Z is a normalizing constant, T is the temperature constant, and U( f ) is the energy
function. The energy

U( f ) = ∑
c∈C

Vc( f ) (2)

is a sum of clique potentials Vc( f ) over all possible cliques C . P( f ) measures the prob-
ability of the occurrence of a particular configuration, or “pattern”, and is a decreasing
function of the energy. A clique potential is defined on the labels on the clique c.

Contextual constraints are encoded in Vc( f ) for c containing more than one site.
Consider up to two site cliques, U( f ) can be expressed as

U( f ) = ∑
{i}∈C1

V1( fi)+ ∑
{i,i′}∈C2

V2( fi, fi′) (3)

where it is V2 that encode contextual constraints.

2.2 Gabor Wavelets

In this work, we use Gabor wavelets, instead of the raw face image pixels, as basic face
features because Gabor wavelets features exhibit desirable characteristics of spatial lo-
cality and orientation selectively, and are optimally localized in the space and frequency
domains.

A face is represented Gabor-based vector, derived as a set of convolutions with a
family of complex Gabor filters:

ψµ,ν =
k2

µ,ν

σ2 exp(−k2
µ,ν z2

2σ2 )[exp(ikµ,ν z)− exp(−σ2

2
)] (4)
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where µ and ν define the orientation and scale of the Gabor kernels respectively, z =
(x,y), and the wave vector kµ,ν is defined as follows:

kµ,ν = kν eiφµ (5)

where kν = kmax/ f ν , kmax = π/2, f =
√

2, φµ = πµ/8, with index j = µ + 8ν . This
representation is chosen for its biological relevance and technical properties. The Gabor
kernels resemble the receptive field profiles of simple cells in the visual pathway. They
are localized in both space and frequency domains and achieve the lower bound of
the space-bandwidth product as specified by the uncertainty principle. At each pixel
location X = (u,v), the Gabor coefficients are computed as

J j(X) =
∫

I(X ′)ψ j(X−X ′)d2X ′ ( j = 0,1,2 . . .40) (6)

where I(X) is the image grey level distribution.
Five scales, indexed by µ ∈ {0,1,2,3,4} and eight orientations, indexed by ν ∈

{0,1,2, . . . ,7}, are used. Convolving the filters with an image gives 40 complex coeffi-
cients, and we can then get 40 Gabor magnitudes as a more salient representation.

The Gabor filtering gives a set of 40 features for each region I of the gallery, denoted
as a 40-dim vector D(I). We can similarly compute d(i) for each region i of the probe.
These are the original data.

3 MAP-MRF Based Face Recognition

3.1 Formulation

The basic face matching problem is to compare a probe and a gallery by finding the
best correspondences or region matches between the two. The regions in the probe that
find no good matches in the gallery is labeled NULL (“no-match”) indexed by 0. The
problem of matching between probe and gallery using MRF modeling is formulated as
labeling the sites in S in terms of the label set L + = {0,1, . . . ,L}.

The MAP-MRF matching maximizes the posterior probability, which is defined
based on observation data and contextual constraints between sites

f ∗ = argmax
f

P( f | d) (7)

where d is the observation data and in this work corresponds to the set of Gabor features
extracted from the probe face image. The posterior probability can be derived from the
prior distribution P( f ) and the likelihood function p(d | f ). Assuming that f is a MRF,
its distribution follows a Gibbs distribution of Equ.(1). Assuming that the likelihood
distribution is also an exponential function p(d | f ) ∝ e−U(d | f ), then the posterior
probability has the following form

P( f | d) ∝ e−U( f | d) ∝ e−U( f )−U(d | f ) (8)

The MAP estimate is equivalently found by minimizing the posterior energy function

f ∗ = argmin
f

U( f | d) (9)
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The following derives U( f ) and U(d | f ).
The likelihood function p(d | f ) has the following characteristics:

1. It is conditioned on pure non-NULL matches fi 6= 0,
2. It is independent of the neighborhood system N , and
3. It depends on how the model object is observed in the scene which in turn depends

on the underlying transformations and noise.

Assuming that the Gabor features in d are invariant under the considered class of trans-
formations, and d of probe is related the corresponding features D of gallery via the
observation model

d(i) = D( fi)+ e(i) (10)

where e is additive independent zero mean Gaussian noise. The Gaussian assumptions
may not be accurate but offers an approximation.

Then the likelihood function is a Gibbs distribution with the energy

U(d | f ) = ∑i∈S , fi 6=0 V1(d(i) | fi) (11)

where the constraint fi 6= 0 restricts the summations to take over the non-NULL matches.
The likelihood potentials are

V1(d(i)| fi) =
{

∆(d(i),D( fi)) if fi 6= 0
0 otherwise (12)

where ∆(d(i),D( fi)) = |d(i)−D( fi)|e is some distance between the two random vectors
respect to the noise e. In practice, we apply LDA (linear discriminant analysis) to find
the discriminant subspace of the distribution of the training data, which is done over
the whole image for all sites i, and use the Euclidean distance in the LDA subspace to
replace the likelihood energy U(d | f ).

To model the prior distribution of Equ.(3), the single-site potentials are defined as

V1( fi) =
{

v10 if fi = 0
0 otherwise (13)

where v10 is a constant.
Between the probe and gallery, a pair of local matched regions (i, fi) incurs a dis-

placement vector D(i, fi) = [dx(i, fi),dy(i, fi)]. The displacement image can be consid-
ered as a “flow map”. The displacement in a neighborhood should be as consistent as
possible. This is the smoothness constraint used as the contextual constraint.

We therefore define the pair-site potentials as

V2( fi, fi′) =
{

v20 if fi = 0 or fi′ = 0
|D(i, fi)−D(i′, fi′)| otherwise (14)

where v20 is a constant and |D(i, fi)−D(i′, fi′)| is the flow inconsistency. When the
displacement vectors in the neighborhood are similar, the local flow inconsistency is
small; otherwise they incur a large penalty. If either fi or fi′ is the NULL , it incurs
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a penalty of v20; otherwise, the penalty is the flow inconsistency. The above clique
potentials define the prior energy

U( f ) = ∑
i∈S

V1( fi)+ ∑
i∈S

∑
i′∈Ni

V2( fi, fi′) (15)

The posterior energy is then obtained as U( f | d) = U( f )+U(d | f ).

3.2 Search Algorithm

Finding a MAP-MRF solution is to find the best matched correspondences between
regions in the input probe and the gallery, according to both image features and their
relationships. This amounts to finding the minimum of U( f | d). While it is a combi-
natorial optimization problem and the global solution is computationally inhibitive, we
present a heuristic local minimization algorithm to find a local solution as follows.

First, we do a local search over a neighborhood of i to minimize the simple Eu-
clidean distance between d(i) and D( fi). This gives the best matched region f ∗i in terms
of the observation d(i). For each i, if the distance is too large, we set f ∗i = 0. After this
is done for all i, we calculate the Euclidean distance in LDA subspace between the data
in d of the probe and D of the gallery. This gives the likelihood energy U(d | f ∗) of
Equ.(11). After that, the displacements over the neighborhood can be computed. From
these, the the flow inconsistency can be estimated according to Equ.(14). The final pos-
terior energy U( f ∗ | d) is evaluated as the cost for the best overall cost.

Supposing there are N gallery faces, then N costs can be obtained for the N galleries:
E( f (n)) = U( f (n) | d). Let the lowest cost among the N matches be

Emin = min
n∈{1,...,N}

E( f (n)) (16)

and the corresponding gallery image be

nmin = arg min
n∈{1,...,N}

E( f (n)) (17)

A simplest scheme for face recognition is the following: If the overall minimum energy
is small enough, i.e. Emin < ET hr, the probe is recognized as the person that gallery
nmin belongs to, or otherwise it is considered as not in the gallery set. Some more so-
phisticated schemes are possible by considering all E( f (n))s and the associated person
identities.

4 Experiments

The experiments are presented to compare face recognition performance without (non-
MRF methods) and with (the proposed MAP-MRF method) using contextual constraint.
Six non-MRF algorithms are evaluated: PCA, Fisher face (FLDA) [13], regularized
LDA (RLDA) [14], Gabor+PCA, Gabor+FLDA, Gabor+RLDA, which are popular meth-
ods and have achieved great success in face recognition. The Gabor+PCA, Gabor+FLDA,



Bayesian Face Recognition Based on Markov Random Field Modeling 7

Gabor+RLDA and MAP-MRF methods use a selected set of 4000 Gabor features, for
which 100 salient locations (regions) on a face are selected and 40 Gabor magnitude
features are computed at each of the locations.

Two face databases, FERET [15] and FRGC ver 2.0 [16] are used for the experi-
ments. All the images are rotated, scaled and cropped to 128× 128 according to the
provided eye positions succeeded by histogram equalization preprocessing. No further
preprocessing is applied. For FERET database, the training set contains 731 images.
In test phase, we use the gallery set containing 1196 images from 1196 subjects, and
combine four provided probe sets together, totally including 2111 images to compose
the probe set. So our test protocol should be more difficult than any of the four original
protocols because we consider different factors (expression, illumination, aging etc.) to-
gether to evaluate the performance. For FRGC database, we select a subset from query
set for experiment 4, which consists of still uncontrolled images including variations of
illumination, expression, accessory and blurring. There are 316 subjects, each of which
contains at least 10 images. We randomly select 10 images for each subject to get a
total 316×10 = 3,160 images. These images are randomly divided into three sets. The
training set consists of 116 persons, with 10 images per person. The left 200 subjects
are divided into gallery and probe sets. For each person, 2 images randomly selected
from the 10 images compose the gallery set and the left 8 images compose the probe
set. The persons in training set are disjoint with those in gallery and probe sets. Fig. 1
illustrates some cropped face examples of FERET and FRGC databases.

(a) (b)

Fig. 1. Face examples of FERET (a) and FRGC (b) databases.

The results are reported in terms of three performance indices: rank-1 recognition
rate, verification rate (VR) when the false accept rate (FAR) is 0.001, and equal error
rate (EER).

Table 1 and 2 illustrate the results of different methods on FERET and FRGC
databases respectively and Fig. 2 plots the corresponding ROC curves. For clarity, we
only plot the results based on the Gabor features. In all experiments, the MAP-MRF
method achieves the best accuracy. The results suggest that the use of contextual con-
straints is more robust to expression, aging, mis-alignment etc.
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Fig. 2. Receiver operating characteristic (ROC) curves of different methods on FERET (a) and
FRGC (b) databases.
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Table 1. Performance of different methods on FERET database

Method Rank-1 VR@FAR=0.001 EER
PCA 0.5201 0.4713 0.1268

FLDA 0.6798 0.5585 0.1243
RLDA 0.7688 0.6750 0.0872

Gabor+PCA 0.7144 0.6400 0.1058
Gabor+FLDA 0.7575 0.6296 0.0732
Gabor+RLDA 0.8693 0.8167 0.0543

MAP-MRF 0.8977 0.8541 0.0397

Table 2. Performance of different methods on FRGC database

Method Rank-1 VR@FAR=0.001 EER
PCA 0.6219 0.2759 0.1686

FLDA 0.7887 0.4172 0.1677
RLDA 0.8625 0.5394 0.1133

Gabor+PCA 0.8581 0.5759 0.0779
Gabor+FLDA 0.8962 0.6169 0.0785
Gabor+RLDA 0.9150 0.6678 0.0666

MAP-MRF 0.9425 0.7250 0.0584

5 Summary and Conclusions

In this paper, we present a MRF modeling method for face recognition. Contextual con-
straints, which should play an important role in recognition, are encoded in the formu-
lation in the MAP-MRF framework, such that the objective function encodes not only
constraints on image features but also relationships between them. An algorithm is pro-
vided to find an approximate optimal solution. The results show the advantage of using
contextual constraints for face recognition in the MAP-MRF framework, and suggest
MAP-MRF as a potential and competitive alternative for robust face recognition.
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