
A Smarter Particle Filter

Xiaoqin Zhang1,Weiming Hu1,Steve Maybank2

1National Laboratory of Pattern Recognition, Institute of Automation, Beijing, China
{xqzhang,wmhu}@nlpr.ia.ac.cn

2School of Computer Science and Information Systems,Birkbeck College,London,UK
sjmaybank@dcs.bbk.ac.uk

Abstract. Particle filtering is an effective sequential Monte Carlo approach to
solve the recursive Bayesian filtering problem in non-linear and non-Gaussian
systems. The algorithm is based on importance sampling. However, in the lit-
erature, the proper choice of the proposal distribution for importance sampling
remains a tough task and has not been resolved yet. Inspired by the animal swarm
intelligence in the evolutionary computing, we propose a swarm intelligence
based particle filter algorithm. Unlike the independent particles in the conven-
tional particle filter, the particles in our algorithm cooperate with each other and
evolve according to the cognitive effect and social effect in analogy with the co-
operative and social aspects of animal populations. Furthermore, the theoreti-
cal analysis shows that our algorithm is essentially a conventional particle filter
with a hierarchial importance sampling process which is guided by the swarm
intelligence extracted from the particle configuration, and thus greatly overcome
the sample impoverishment problem suffered by particle filters. We compare the
proposed approach with several nonlinear filters in the following tasks: state es-
timation, and visual tracking. The experiments demonstrate the effectiveness and
promise of our approach.

1 Introduction

Particle filters have been extensively studied in the computer vision and pattern recog-
nition community due to its crucial value in numerous applications including visual
tracking, robot localization, machine learning, and signal processing.

Essentially, particle filter is a sequential Monte Carlo approach to solve the recur-
sive Bayesian filtering problem, which combines the powerful Monte Carlo sampling
technique with Bayesian inference. It relaxes the linearity and Gaussianity constraints
of the Kalman filter and provides a tractable solution to non-linear and non-Gaussian
problems. The basic idea of particle filtering is to use a number of independent random
variables called particles, sampled from a proposal distribution, to represent the pos-
terior probability, and to update the posterior by involving the new observations. The
particles is properly propagated and weighted recursively according to the Bayesian
rule. Although particle filtering has achieved a considerable success in the analysis of
sequential time series, it is faced with a fatal problem-sample impoverishment due to its
suboptimal sampling mechanism, based on a proposal distribution. When the proposal
distribution is concentrated in the tail of the observation distribution the performance of

the particle filter is very poor since most particles have low weights, thereby leading to
the well-known sample impoverishment problem.

Recently PSO (particle swarm optimization) [1–5], a new population based stochas-
tic optimization technique, has received more and more attention because of its consid-
erable success. Unlike the independent particles in the particle filter, the particles in PSO
interact locally with one another and with their environment in analogy with the coop-
erative and social aspects of animal populations, for example as found in birds flocking.
Starting from a diffuse population, now called a swarm, individuals, now termed par-
ticles, tend to move in the state space and eventually cluster in regions where optimal
state is located. The advantages of this mechanism are, on one hand, the robustness and
sophistication of the obtained group behavior and, on the other hand, the simplicity and
low cost of the computation associated with each particle.

Inspired by the forgoing discussions, we propose a swarm intelligence based particle
filter algorithm, in which the particles are viewed as intelligent individuals, e.g. birds,
and evolve through communicating and cooperating with each other. Meanwhile, we
also conduct a theoretical analysis from a ‘Bayesian filtering’ perspective, and find that
the proposed algorithm is essentially a conventional particle filter with a hierarchial im-
portance sampling process. The hierarchial importance sampling process which consists
of two stages: 1) a coarse sampling from the state transition distribution p(xt|xt−1), 2)
a fine sampling carried out by the PSO iterations which are based on the ‘cognitive’ and
‘social’ aspects of particle populations. In this way, the newest observations are grad-
ually taken into consideration to approximate the sampling results from the optimal
proposal distribution p(xt|xt−1, yt) [6], and thereby overcome the sample impoverish-
ment problem suffered by convectional particle filters.

This paper is arranged as follows. The standard particle filter and its limitation are
presented in Section 2. The proposed annealed Gaussian based particle swarm opti-
mization is introduced in Section 3. Section 4 gives a detailed description of the smarter
particle filter and its theoretical analysis. Experimental results are shown in Section 5,
and Section 6 is devoted to conclusion.

2 Particle Filter and Its Limitation

To make this paper self-contained, we first briefly review the conventional particle filter
, which is described in more detail in [7], and then summarize its major limitation.

2.1 Particle Filter

The particle filter is an on-line Bayesian inference process for estimating the unknown
state xt at time t from sequential observations y1:t perturbed by noise. A dynamic state-
space form employed in the Bayesian inference framework is shown as follows [7],

state transition model xt = ft(xt−1, εt) ↔ p(xt|xt−1) (1)

observation model yt = ht(xt, νt) ↔ p(yt|xt) (2)

where xt, yt represent system state and observation, εt, νt are the system noise and
observation noise. ft(., .) and ht(., .) are the state transition and observation models,

which are determined by probability distributions p(xt|xt−1) and p(yt|xt) respectively.
The Bayesian inference process is achieved by

p(xt|y1:t) ∝ p(yt|xt)p(xt|y1:t−1) (3)

where the prior p(xt|y1:t−1) is the propagation of the previous posterior along the tem-
poral axis,

p(xt|y1:t−1) =
∫

p(xt|xt−1)p(xt−1|y1:t−1)dxt−1 (4)

When the state transition and observation models are nonlinear and non-Gaussian, the
above integration is intractable and one has to resort to numerical approximations such
as particle filters. The basic idea of particle filter is to use a number particles {xi

t}N
i=1,

sampled directly from the state space, to approximate the posterior distribution. Thus
the posterior can be formulated as p(xt|y1:t) = 1

N

∑N
i=1 δ(xt − xi

t), where δ(·) is
the Dirac function. Since it is usually impossible to sample from the true posterior, an
easy-to-implement distribution, the so-called proposal distribution denoted by q(·) is
employed, hence xi

t ∼ q(xt|xi
t−1, y1:t), (i = 1, · · ·, N), then each particle’s weight is

set to

wi
t ∝

p(yt|xi
t)p(xi

t|xi
t−1)

q(xt|xi
t−1, y1:t)

. (5)

Finally, the posterior probability distribution is approximated as p(xt|y1:t) =
∑N

i=1 wi
t

δ(xt−xi
t). After the importance sampling step, a re-sampling step is adopted to ensure

the efficiency of the particles’ evolution. To summarize, the detail process of particle
filter is presented in Algorithm 1.

Algorithm 1 Particle Filter

1. Initialization: for n = 1, · · ·, N , sample x
(n)
0 ∼ p(x0), w

(n)
0 = 1/N .

2. For time steps t = 1, 2, · · ·
3. Importance Sampling: for n = 1, · · ·, N , draw samples from the importance proposal
distribution as follows:

x̃
(n)
t ∼ q(xt|x(n)

t−1, y1:t)

4. Weight update: evaluate the importance weights with Equation (5).
5. Normalize the importance weights:

w̃
(n)
t =

w
(n)
tPN

i=1 w
(i)
t

6. Output the statistics of the particles: MMSE or MAP estimate.
7. Resampling: generate N new particles x

(n)
t from the set {x̃(n)

t }N
n=1 according to the

importance weights {w̃(n)
t }.

8. Repeat Steps 3 to 7.

2.2 Limitation

The proposal distribution q(·) is critically important for a successful particle filter be-
cause it concerns putting the sampling particles in the useful areas where the posterior

is significant. In practice, the state transition distribution p(xt|xt−1) is usually taken as
the proposal distribution for its simplicity. However, this proposal distribution contains
little information about the current observations, consequently resulting to a inefficient
sampling.

As shown in Fig.1(a), when the transition model is situated in the tail of the ob-
servation distribution, then the weight of most particles are low, thereby leading to the
sample impoverishment problem.

(a) (b)

Fig. 1. An illustration of importance sampling (left: sample from p(xt|xt−1), right: after PSO
iterations)

3 Annealed Gaussian Based PSO

3.1 Traditional PSO

Particle swarm optimization [1], is a population based stochastic optimization tech-
nique, which is inspired by the social behavior of bird flocking. In detail, a PSO al-
gorithm is initialized with a group of random particles {xi,0}N

i=1 (N is the number of
particles). Each particle xi,0 has a corresponding fitness value which is evaluated by a
fitness model f(xi,0), and has a relevant velocity vi,0 which is a function of the best
state found by that particle (pi, for individual best), and of the best state found so far
among all particles (g, for global best). Given these two best values, each particle up-
dates its velocity and state with following equations in the nth iteration,

vi,n+1 = wnvi,n + ϕ1u1(pi − xi,n) + ϕ2u2(g − xi,n) (6)

xi,n+1 = xi,n + vi,n+1 (7)

where wn is the inertial weight, the ϕ1, ϕ2 are acceleration constants, and u1, u2 ∈
(0, 1) are uniformly distributed random numbers. The inertial weight w is usually a
monotonically decreasing function of the iteration n. For example, given a user-specified
maximum weight wmax and a minimum weight wmin, one way to update w is as fol-
lows:

wn+1 = wn − dw, dw = (wmax − wmin)/T (8)

where T is the maximum iteration number. In Eq.(6), the three different parts represent
inertial velocity, cognitive effect and social effect respectively. After the nth iteration,

the fitness value of each particle is evaluated by a predefined fitness model as follows.

f(xi,n+1) = p(yi,n+1|xi,n+1) (9)

where yi,n+1 is the observation corresponding to the state xi,n+1. Then the individual
best and global best of the particles are updated in the following equations:

pi =
{

xi,n+1, if f(xi,n+1) > f(pi)
pi, else

(10)

g = arg max
pi

f(pi) (11)

In this way, the particles search for the optima through the above iterations until the
fitness value of g reaches a certain threshold or the maximum iteration number is en-
countered.

3.2 Annealed Gaussian Based PSO

In the above version of PSO algorithm, there are several parameters to be tuned: inertial
weights wn, acceleration constants ϕ1, ϕ2. There is a lack of a mechanism for control-
ling of these parameters, which fosters the danger of swarm explosion and divergence
especially in high dimensions. Therefore, we propose an annealed Gaussian based par-
ticle swarm optimization (AGPSO) algorithm, where the particles and their velocities
are updated in the following way,

vi,n+1 = |r1|(pi − xi,n) + |r2|(g − xi,n) + η (12)

xi,n+1 = xi,n + vi,n+1 (13)

where r1, r2 are random numbers sampled from the Gaussian probability distribution
N (0, 1), and η is zero-mean Gaussian perturbation noise to avoid trapping in local
optima whose covariance matrix is changed in an adaptive simulated annealing way
[8]:

Σn
η = Σe−cn (14)

where Σ is the covariance matrix of the predefined transition distribution, c is an an-
nealing constant, and n is the iteration number. Compared with the traditional PSO, it
has two major merits: a) a big reduction in the number of parameters–there is a single
annealing parameter, b) it converges much faster than traditional PSO (see Section 5.1).

4 Swarm Intelligence Based Particle Filter

4.1 Motivation

In [6], it is shown that the ‘optimal’ importance proposal distribution is p(xt|xi
t−1, yt)

in the sense of minimizing the variance of the importance weights. However, in prac-
tice, it is impossible to use p(xt|xi

t−1, yt) as the proposal distribution in the non-linear
and non-Gaussian cases, since it is difficult to sample from p(xt|xi

t−1, yt) and to eval-
uate p(yt|xi

t−1) =
∫

p(yt|xt)p(xt|xi
t−1)dxt. So the question is, how to incorporate the

current observation yt into the transition distribution p(xt|xt−1) to form an effective
proposal distribution at a reasonable computation cost.

,;86=+ DEAB
<E8C5E<A@ AC @AE

18D5?B><@:
DEC5E8:H

3B75E8 B5CE<6>8D
5@7 B5C5?8E8CD

-<E@8DD
8G5>F5E<A@

05CE<6>8D
6A@9<:FC5E<A@

15@7A?
BCAB5:5E<A@

/

4

2E5:8 . 2E5:8 .. 2E5:8 ...

Fig. 2. Overview of the proposed algorithm

4.2 The Smarter Particle Filter

From the description of Section 3, we can see that the PSO iterations can naturally take
the observation into consideration, since the particles cooperate and evolve according to
their fitness values which are updated by their corresponding observations. Inspired by
this property of the PSO, we propose a swarm intelligence based particle filter, in which
the particles are firstly propagated by the state transition model, and then corporately
evolve according to the PSO iterations.

To give a clear view, the flowchart of the swarm intelligence based particle filter
is shown in Fig.2. First, the individual best of particles from the previous time t −
1 are resampled and randomly propagated by state transition model to enhance their
diversities. Then, by moving the particle swarm towards the particle with the best fitness
value, PSO drives all particles towards high likelihood regions. Finally, when the fitness
value of gt reaches a certain threshold or the maximum iteration number is encountered,
the optimized sampling process is stopped. The global best gt or the mean of individual
best pi

t is output as the maximum a posterior (MAP) estimate or minimum mean square
error (MMSE) estimate. The details of the proposed algorithm are as follows.

1. Input: the N individual best particles {pi
t−1}N

i=1 at time t− 1;
2. Resample the above particles according to their fitness value, resulting to a new particle set
{p̃i

t−1}N
i=1;

3. Randomly propagate the particle set to enhance their diversities according to the following
transition model

xi,0
t ∼ p(xt|p̃i

t−1)
4. for n = 0, 1, 2, . . . , T do
5. Carry out the PSO iteration based on Equations (12),(13)

vi,n+1
t = |r1|(pi

t − xi,n
t) + |r2|(gt − xi,n

t) + η

xi,n+1
t = xi,n

t + vi,n+1
t

6. Evaluate the fitness values

f(xi,n+1
t) = p(yi,n+1

t |xi,n+1
t)

where yi,n+1
t is the observation corresponding to xi,n+1

t ;
7. Update the two best particles and the covariance matrix

pi
t =

(
xi,n+1

t , if f(xi,n+1
t) > f(pi

t)

pi
t, else

, gt = arg max
pi

t

f(pi
t)

Σn+1
η = Σe−c(n+1)

8. Check the convergence criterion;
9. If satisfied, break;

10. end for
11. Output: the global best gt or the mean of {pi

t}N
i=1;

4.3 Theoretical Analysis From Bayesian Filtering View

In this part, we conduct a theoretical analysis of our algorithm from a Bayesian filtering
view, and show why our algorithm improves on the particle filter.

Hierarchical Importance Sampling In our algorithm as described in Section 4.2, we
take a two-stage sampling strategy to generate samples that approximate to the ‘opti-
mal’ proposal distribution: first, the particles are sampled from the state transition dis-
tribution p(xt|xt−1); second, the sampled particles evolve through the PSO iterations
to obtain the final importance sampling.

From the particle filtering view, we can see that our strategy is essentially a hierar-
chical importance sampling. In the coarse importance sampling stage, the particles are
firstly sampled from the state transition distribution as in conventional particle filters to
enhance their diversity.

xi,0
t ∼ p(xt|p̃i

t−1) (15)

In the fine importance sampling stage, the particles evolve through PSO iterations,
and are updated according to the newest observations. In fact, this is essentially a latent
multi-layer importance sampling process with an implicit proposal distribution. Sup-
pose xt ∈ Rd be d-dimensional state, let’s focus on one PSO iteration in Section 4.2,
suppose xt ∈ Rd is a d-dimensional state, the distribution of the lth element in the
vector |r1|(pi

t − xi,n
t) is as follows:

|r1|(pi
t − xi,n

t)l,∼
{2N (0, (pi

t − xi,n
t)

2

l) [0,+∞), if (pi
t − xi,n

t)l ≥ 0

2N (0, (pi
t − xi,n

t)
2

l) (−∞, 0), else

where l = 1, · · ·, d, so the distribution of |r1|(pi
t − xi,n

t) is

|r1|(pi
t − xi,n

t) ∼ R1 = 2N (0, Σ1), Σ1 =

(pi
t − xi,n

t)
2

1 0
. . .

0 (pi
t − xi,n

t)
2

d

Similarly available,

|r2|(gt − xi,n
t) ∼ R2 = 2N (0, Σ2), Σ2 =

(gt − xi,n
t)

2

1 0
. . .

0 (gt − xi,n
t)

2

d

Together with η ∼ R3 = N (0, Ση), the implicit proposal distribution behind a PSO
iteration is R = R1 ∗ R2 ∗ R3

1 with a xi,n
t translation. Here ∗ stands for convolution

operator.
1 Since the analytical form of R is not available, we called it latent sampling process.

In this way, the PSO iterations can naturally take the current observation yt into
consideration, since {pi

t}N
i=1 and gt are updated to their observations. Therefore, with

coarse importance sampling stage from the state transition distribution p(xt|p̃i
t−1), the

hierarchical sampling process can approximate to the optimal sampling from p(xt|xi
t−1

, yt).
As shown in Fig.1, when the transition distribution is situated in the tail of the ob-

servation likelihood, the particles directly drawn from this distribution do not cover a
significant region of the likelihood, and thus the importance weights of most particles
are low, resulting to unfavorable performance. In contrast, through hierarchial sampling
process in our algorithm, the particles are moved towards the region where the likeli-
hood of observation has larger values, and are finally relocated to the dominant modes
of the likelihood, demonstrating the effectiveness of our sampling strategy.

5 Experimental Results

We compare the performance of our algorithm to several non-linear filters on two esti-
mation problems: 1) a synthetic state estimation problem; 2) real world visual tracking
problem. All of the experiments are carried out on a CPU Pentium IV 3.2GHz PC with
512M memory2.

5.1 State Estimation

The algorithm is firstly tested on a non-linear state estimation problem, which is de-
scribed as benchmark in many papers [9]. Consider the following nonlinear state tran-
sition model given by

xt = 1 + sin(wπ(t− 1)) + φ1xt−1 + vt−1, xt ∈ R (16)

where vt−1 is a Gamma Ga(3, 2) random variable modeling the process noise, and
w = 4e− 2 and φ1 = 0.5 are scalar parameters. A non-stationary observation model is
as follows

yt =
{

φ2x
2
t + nt, t ≤ 30

φ3xt − 2 + nt, t > 30
(17)

where φ2 = 0.2, φ3 = 0.5, and the observation noise nt is drawn from a Gaussian dis-
tribution N (0, 0.00001). Given only the noisy observation yt, several filters are used
to estimate the underlying state sequence xt for t = 1 · · · 60. Here, we compare
our algorithm (with AGPSO) with conventional particle filter [7], extended Kalman
based particle filter [10], unscented particle filter [9], auxiliary particle filter [11], and
our algorithm (with traditional PSO)3. For each algorithm, a proposal distribution is
chosen as shown in Table 1. The parameters in APSO and PSOPF are set as follows:
Σ = 0.8, c = 2, ϕ1 = ϕ2 = 1, wmax = 0.8, wmin = 0.1, T = 20. Fig.3 gives an
illustration of the estimates generated from a single run of the different filters. Com-
pared with other nonlinear filters, our algorithm is more robust to the outlier, where the

2 The data and code used in these experiments are available by writing to the authors.
3 We call these filters AGPSOPF, PF, EKPF, UPF, APF, PSOPF respectively for short in the

following parts.

Algorithm Proposal MSE mean MSE var Time(s)
Particle filter (PF) p(xt|xt−1) 0.42225 0.045589 3.6939

Extended Kalman particle filter (EKPF) N(x̄t, P̄t) 0.31129 0.015167 13.014
Unscented particle filter (UPF) N(x̄t, P̄t) 0.06977 0.024894 26.2815
Auxiliary particle filter (APF) p(xt|xt−1) 0.55196 0.037047 7.1835

Our algorithm (with PSO) p(xt|xt−1) 0.13019 0.044086 10.2087
Our algorithm (with AGPSO) p(xt|xt−1) 0.060502 0.06852 6.8005

Table 1. Experimental results of state estimation

observation is severely contaminated by the noise. Since the result of a single run is a
random variable, the experiment is repeated 100 times with re-initialization to generate
statistical averages. Table 1 summarizes the performance of all the different filters in the
following aspects: the means, variances of the mean-square-error (MSE) of the state es-
timates and the average execute time for one run. It is obvious that the average accuracy
of our algorithm is better than generic PF, EKPF, APF and comparable to that of UPF.
However, the real-time performance of our algorithm is much better than UPF as Table
1 shows. Meanwhile, we can see that AGPSOPF can achieve a much faster convergence
rate than PSOPF. This is because the velocity part employed in Eq.(6) carries little in-
formation, while the annealing part in our PSO iterations enhances the diversity of the
particle set and its adaptive effect enables a fast convergence rate. In summary, the total
performance of our algorithm prevails over that of other nonlinear filters.

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

D
at

a

Time

States (x)
Observations(y)

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

(a) True data (b) PF (c) EKPF

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

0 10 20 30 40 50 60
−2

0

2

4

6

8

10

12

14

16

18

(d) UPF (e) APF (f) Our algorithm

Fig. 3. An illustration of a single run of different filters

5.2 Visual Tracking

In this part, we apply these filters (except EKPF and PSOPF) to a rapid motion tracking
task to further demonstrate the effectiveness of the sampling strategy in our algorithm.

Fig. 4. Tracking performances of a human face with rapid motion (green: PF, blue: UPF, cyan:
APF, magenta: our algorithm)

This video sequence4 contains a human face with a rapid motion (see Fig.4). In
tracking application, p(xt|xt−1) is used to model the object motion, so when p(xt|xt−1)
is not coincident with the actual motion, the sampling directly from p(xt|xt−1) will not
be efficient. Therefore, although this sequence seems simple, its rapid and arbitrary
motion is a challenge for the different improvements of sampling strategy.

In our implementation, we adopt an incremental learned subspace based appear-
ance model [12] for observation evaluation, and we consider only translational motion
x = (tx, ty) for simplicity, since our goal is to test the sampling efficiency of all the
non-linear filters. Here, p(xt|xt−1) is set to a Gaussian distribution with a covariance
matrix Σ = diag(82, 82), and the annealing const is also set to 0.3, and the particle
number is set to 200. As shown in Fig.4, the PF based tracker and APF based tracker
soon fail to track the object, because the particles directly sampled from the state transi-
tion distributionN (xt−1, Σs) can not catch the rapid motion of the object, and thus the
weights of most particles are low, leading to the tracking failure. More particles and an
enlargement for the diagonal elements of the covariance matrix would improve its per-
formance, but this strategy involves more noises and a heavy computational load, and
it may trap in the curse of dimensionality when the dimension of the state increases.
While the UPF based tracker can follow the object throughout the sequence, the lo-
calization accuracy is unsatisfactory. In comparison, our algorithm, which evolves the
particles by the swarm intelligence based importance sampling, never loses the target
and achieves the most accurate results. Furthermore, we have conducted a quantitative
evaluation of these algorithms, and have a comparison in the following aspects: frames
of successful tracking, RMSE (root mean square error) between the estimated position
and the labeled groundtruth, and average tracking time of each frame. In Table 3, our
algorithm outperforms the other filters based trackers in accuracy with a reasonable
sacrifice of speed, which witnesses the effectiveness our sampling strategy.

Algorithm Frames Tracked RMSE of Position (by pixels) Average Tracking Time (by seconds)
PF 5/31 33.4580 0.051

UPF 31/31 3.5097 80.785
APF 4/31 38.7260 0.098

AGPSO 31/31 2.0112 0.731

Table 2. Quantitative results of the tracking performance

6 Conclusion

In this paper, we propose a swarm intelligence based particle filter to overcome the
sample impoverishment problem. Unlike the independent particles in the convectional

4 The sequence is available at http://vision.stanford.edu/ birch/headtracker/seq/.

particle filters, the particles in our algorithm cooperate each other and evolve accord-
ing to the cognitive effect and social effect in analogy with the cooperative and social
aspects of animal populations. We conduct a theoretical analysis in a Bayesian filtering
view, and find that our algorithm is essentially a convectional particle filter with a hierar-
chial importance sampling process which is guided by the swarm intelligence extracted
from particle configuration. The experimental results demonstrate the effectiveness and
promise of our approach.

Acknowledgment
This work is partly supported by NSFC (Grant No. 60825204, 60672040, 60705003)
and the National 863 High-Tech R&D Program of China (Grant No. 2006AA01Z453,
2009AA01Z318).

References

1. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of IEEE Interna-
tional Conference on Neural Networks. Volume 4. (1995) 1942–1948

2. Clerc, M., Kennedy, J.: The particle swarm-explosion, stability, and convergence in amulti-
dimensional complex space. IEEE Transactions on Evolutionary Computation 6(1) (2002)
58–73

3. Wachowiak, M., Smolikova, R., Zheng, Y., Zurada, J., Elmaghraby, A.: An approach to mul-
timodal biomedical image registration utilizing particle swarm optimization. IEEE Transac-
tions on Evolutionary Computation 8(3) (2004) 289–301

4. Zhang, X., Hu, W., Maybank, S., Li, X., Zhu, M.: Sequential particle swarm optimization
for visual tracking. In: Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition. (2008) 1–8

5. Zhang, X., Hu, W., Li, W., Qu, W., Maybank, S.: Multi-object tracking via species based par-
ticle swarm optimization. In: Proceedings of International Workshop on Visual Surveillance.
(2009)

6. Doucet, A., Godsill, S., Andrieu, C.: On sequential monte carlo sampling methods for
bayesian filtering. Statistics and Computing 10(3) (2000) 197–208

7. Arulampalam, M., Maskell, S., Gordon, N., Clapp, T.: A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. IEEE Transactions on Signal Processing 50(2)
(2002) 174–188

8. Ingber, L.: Simulated annealing: Practice versus theory. Journal of Mathematical and Com-
puter Modeling 18(1) (1993) 29–57

9. Merwe, R., Doucet, A., Freitas, N., Wan, E.: The unscented particle filter. Advances in
Neural Information Processing Systems (2001)

10. Freitas, D., Niranjan, M., Gee, A., Doucet, A.: Sequential monte carlo methods to train
neural network models. Neural Computation 12(4) (2000) 955–993

11. Pitt, M., Shephard, N.: Filtering via simulation: Auxiliary particle filters. Journal of the
American Statistical Association 94(446) (1999) 590–591

12. Lim, J., Ross, D., Lin, R., Yang, M.: Incremental learning for visual tracking. Advances in
Neural Information Processing Systems 17 (2005) 793–800

