
Adaptive Distributed Intrusion Detection Using Parametric Model

Jun Gao，Weiming Hu，Xiaoqin Zhang，and Xi Li

National Laboratory of Pattern Recognition

Institute of Automation, Chinese Academy of Sciences

E-mail :{jgao, wmhu, xqzhang, lixi}@nlpr.ia.ac.cn

Abstract

Due to the increasing demands for network security,

distributed intrusion detection has become a hot re-

search topic in computer science. However, the design

and maintenance of the intrusion detection system (IDS)

is still a challenging task due to its dynamic, scalability,

and privacy properties. In this paper, we propose a

distributed IDS framework which consists of the indi-

vidual and global models. Specifically, the individual

model for the local unit derives from Gaussian Mixture

Model based on online Adaboost algorithm, while the

global model is constructed through the PSO-SVM

fusion algorithm. Experimental results demonstrate

that our approach can achieve a good detection per-

formance while being trained online and consuming

little traffic to communicate between local units.

1. Introduction

Over the past two decades, most algorithms for in-

trusion detection (ID) derive from the field of artificial

intelligence, such as the statistics-based approaches, the

data mining related approach, the neural networks and

clustering methods. However, the aforementioned ap-

proaches have the following limitations. First, they are

not directly applicable to data stream processing since

these methods are trained offline. Second, they do not

have the abilities of distributed processing. Compared

with the centralized-based IDS, the distributed-based

IDS is more popular and efficient in real world.

In general, there are three main challenges that must

be addressed in distributed IDS. First, as a result of

privacy protection, the communication between local

units should shield the original data containing the pri-

vacy information. Second, in order to reduce the occu-

pancy of network bandwidth, the communication traffic

between local units should be as little as possible under

the premise of keeping enough information to gain a

global model. Third, how to effectively and efficiently

combine all local models for improving the detection

performance.

There are several meaningful work about online and

distributed ID so far. Lee et al [1] combine the online

clustering algorithm ART with Concept Vector and

Mercer-Kernel. Thus this algorithm is unsuitable for

the high-capacity data streams because the model pa-

rameters are lack of stability. Otey et al [2] implement

the online algorithm based on frequent itemset mining

and further propose a general-purpose distributed out-

lier detection algorithm, but their algorithm consumes

the huge memory to store the features of training data.

In this paper, we present a distributed IDS frame-

work based on the MAdaboost and PSO-SVM algo-

rithms to address the above challenges. We actualize

the online training and high efficiency fusion of the

local models, while reducing the communication traffic

between local units as much as possible by a parametric

model based on Gaussian Mixture Model (GMM).

The remainder of this paper is organized as follows.

Section 2 introduces the framework for distributed in-

trusion detection. Section 3 reports the experimental

results, and Section 4 concludes the paper.

2. Framework of our distributed IDS

Figure 1 Framework of our distributed IDS
As shown in Figure 1, the framework of our distri-

buted IDS consists of the following three modules:

 Data preprocessing: A set of data has to be labeled

for training. They should contain both normal samples

labeled as „+1‟ and attack samples labeled as „-1,-2…‟.

Then the following three groups of features are ex-

tracted: basic features, content features, and traffic fea-

tures, as introduced in [3].

 Local model: The individual model for each local

unit is constructed based on the online Adaboost and

Expectation-maximization (EM) algorithms. The weak

classifiers required by the Adaboost algorithm are con-

structed based on GMM.

 Global model: After the global broadcast, all local

models are combined together to form the global model

based on PSO and SVM algorithms. Then, local units

can construct a cascade classifier based on the global

and local models to detect the intrusion or just use the

fusion classifier based on the global model.

2.1. Local model module

A. Multiple Adaboost algorithm

Our multiple Adaboost algorithm (MAdaboost) is

the multiple-updating algorithm, which can update sev-

eral ensemble members simultaneously by using a

training sample.

The training sample is (x, y), where y∈{+1,-1,…}.

H={ht | t=1,…T} is a set of weak classifiers. {S
+
, S

-
,

SC , Ct , λ
SC

t , λ
SW

t } are the parameters in the training

processes, where {S
+
, S

-
} are respectively the numbers

of the trained positive samples and negative samples;

SC is the number of samples correctly classified by the

strong classifier, compared with Ct for weak classifier

ht. There are six steps in the MAdboost algorithm:

1. Initialization.

*
1()

(1)
()

if yS S S

elseS S S

2. Sort H= {hr1, hr2,…, hrT | ri∈{1,2,…,T}} by

{fusion_εt} in ascending order for the next process.

() (2)sw sc sw

t t t t

_ (1)* * ()* () (3)t t tfusion sign y h x

3. Update {hri} with fusion_εri ≤ 0.5, according to the

order in H={hr1 , hr2 ,… hrT }.

Compute the iterations Pri for hri

 *exp *(_ min_) (4)ri riP P fusion

where min_ε=min{ fusion_εri }.

Start the loop for hri :

i. Set τ according to Poisson(λ), and update hri

based on the Learn algorithm (see B. Weak clas-

sifiers) using the training sample τ times.

(,(,))rih Learn x y

ii. Compute λ, λ
SC

ri , λ
SW

ri

, () () (5)1 2
*()

2*(1 _)

sc sc

ri ri

ri

ri

if sign y h x

fusion

, () (x) (6)1 2
*()

2* _

sw sw

ri ri

ri

ri

if sign y h

fusion

4. Update the {λ
SC

t , λ
SW

t } of {ht } with fusion_ε t > 0.5 .
*

*

() ()
(7)

sc sc

tt t

sw sw

t t

sign y h xif

else

5. Compute SC using the past ensemble weights {ρt}

before updating H with the current sample, and

compute the parameters {Ct}.

6. The strong ensemble classifier :

1

() (()) (8)
T

t t

t

H x sign h x

where

* *

1

*

 , ()

 (9)
1

log (1) log

T
sw sc sw

t t t t t t t

t

t t
t

t

C

SC

The ensemble weights {ρt} are composed of εt and

log(Ct/SC), which are different from the ones in the

traditional Adaboost algorithm. log(Ct/SC) called

“Contributory Factors” means the contribution rate of

ht to the strong classifier, and can tune the ensemble

weights to attain the better detection performance. At-

tention is required that ρ
*

t equal to zero if ρ
*

t < 0.

ς is the threshold for the strong classifier, which is

determined by the average of the output values of a

fixed window or empirically.

B. Weak classifiers

The weak classifiers, which are inputs of Adaboost

algorithm, can be linear classifiers, Artificial Neural

Networks (ANNs) or other common classifiers. In or-

der to decrease the communication traffic between lo-

cal units as much as possible, we construct the weak

classifiers according to the GMM. The GMM can be

described by several parameters, which means that the

global broadcast only needs to include a set of sum-

mary parameters rather than all training samples.

Suppose the number of features from training data is

D, then there are D weak classifiers for the MAdaboost

algorithm. For the behaviors labeling c, the GMM on

the jth feature is:

1

(), (), () (10)
K

c c c c

j j j j i
i i i

where j∈[1,D] and c∈{+1,-1,-2,…} is the labels of the

behaviors, in which the normal is labeled as +1.

Then, the weak classifier on the jth feature is:

 () (arg max ()) (11)j c
c

h x sign x

(|) 1
() (12)

(|) 1

c

j

c c

j

p x c
x

p x W c

where W is the total class number of intrusions and can

balance the importance of positive and negative sam-

ples as the weight of the conditional probabilities.

The parameters of the GMM can be obtained

through the EM or K-means algorithm. We use the

Learn algorithm based on the sequential EM algorithm

to solve this problem, which updates θ
y

j for τ times us-

ing a training sample (x, y). Limited to the length of the

article, the details about this algorithm is showed in [4].

Attention is required that the Learn algorithm needs not

call the weighted incremental PCA algorithm.

2.2. Global model module

Though the Local model module, we can gain the

local model for every local unit:

 , , (13)

where ψρ={ρi | i∈[1,D]}, ρi is the ensemble weight for

the ith weak classifier; ψθ={θ
c

j | c∈{+1,-1,-2,…},

j∈[1,D]}, where θ
c

j is the parameters of the GMM; ς is

the threshold for the strong classifier.

We combine the Particle Swarm Optimization (PSO)

and SVM algorithms to fuse the local models. By com-

bining the strong searching ability of PSO and the

small sample learning ability of SVM, the local units

can construct the global model just based on the small

sample as fast as possible. The PSO-SVM pseudo-code

is shown in Table 1.

Table 1 PSO-SVM fusion algorithm
Initialize:

 ,0 1
 (Randomly be chosen in particle space)

M

i i
X

 ,0 1
arg max ()

li

M

li i g lii P
P X P f P

Loop:

1. If f(Pg)>max_fintness or iterations reaches the threshold

value, exit.

2. Construct the SVM classifier respectively for each par-

ticle Xi,n, and calculate the detection rate γ(Xi,n).

3. Update {f(Xi,n)}
M

i=1 .

4. Update {Pli}
M

i=1 and Pg .

5. Update {Vi,n+1, Xi,n+1}
M

i=1 .

End

Construct the ultimate SVM classifier for Pg.

Suppose the number of local units is N. Construct a

vector as (r1, r2,…rN), where ri is the result of the ith

local unit for the current data. Attention is required that

these results are in the range [-1, 1]:

1

() (0) (14)
T

i t t

t

r h x

 Limited to the length of the article, the details about

PSO is showed in [5]. Compared with traditional PSO,

there are two differences needed to attend.

 The calculation of velocity :

 , 1 , 1 , 2 ,

, 1 , , 1

()() ()()
(15)

i n i n li i n g i n

i n i n i n

V F wV c rand P X c Rand P X

X X V

where F() is a function to confine the velocity within a

reasonable range: ||Vi,n|| ≤ Vmax.
(0.4)*() / 0.4 (16)w w Titer Iter Titer

where Titer is the maximum iteration number and Iter

is the current iteration.

 The fitness value is evaluated as below:

, ,() * () (1)*(| | | |) | | (17)i n i nf X X A L A

where γ(Xi,n) is the detection rate of the classifier based

on the SVM algorithm for the particle Xi,n; A is the

number of all local units, and L is the number of local

units chosen by the particle Xi,n.

When the certain conditions are met, local models

would globally broadcast their own local models. Then,

each unit can construct the global model according to

its own needs. If local units need the uniform global

model, in the communication between all units, the

shared information should include a small data sample

besides the summary parameters. This sample can be

constructed by randomly sampling from the local train-

ing data according to the proportion of various kinds of

the network behaviors. If local units need the custo-

mized global model, the training data set would be ob-

tained just by sampling from its own training data.

Once local units gain their own global model, the in-

trusions can be detected as follows:

1. Use the local models included in the global

model to detect the current data, and obtain the

result vector [result1, result2,… resultL], L is the

length of the global best particle Pg.

2. Use the ultimate classifier (cascade or global

classifier) to detect the current data.

3. Experiments

We utilize the KDD CUP 1999 data set which is

condensed for IDS researches from DARPA. Four gen-

eral types of attacks are defined in this data set: DOS

(denial of service), U2R (user to root), R2L (remote to

local) and PROBE (surveillance).

In our experiments, the parameters are set as follows:

α=0.1, β=0.8, P=20, ς=0. In the following, we first

show the results with different γ, and then compare the

performance of our MAdaboost algorithm with those of

the existing algorithms, and finally compare the per-

formance of our PSO-SVM algorithm with that of fu-

sion sum rule and SVM algorithm.

3.1. MAdaboost algorithm

As shown in Table 2, when γ ranges from 10 to 50,

we can find that the moderate attenuation coefficient is

important to the performance of the MAdaboost algo-

rithm. If γ is too small, the training data are equivalent

to being used to train all weak classifiers equally; if γ is

too large, the training data are equivalent to only being

used to update the weak classifier with the minimal

fusion_εt. When γ∈[20,30], we construct the better

grade for the updating times of all weak classifiers.

Table 3 shows the performances of some existing

algorithms. Compared with the offline algorithms, our

algorithm not only gains the satisfactory detection rate

while keeping the lower false positive rate, but also can

adaptively modify the local model in a real time man-

ner. Compared with the online algorithm, our algorithm

gains the preferable performance, especially on the

lower false positive rate.

Table 2 Results of different γ
 FPR(%) DR(%)

10 12.87 92.50

20 1.17 90.61

25 1.69 91.15

30 1.26 90.55

40 0.37 88.28

50 0.34 24.33

Table 3 Results comparison for local units

Methods FPR(%) DR(%)

Offline

Hierarchical

SOM [6]
2.19-3.99 90.94-93.46

Bagged C5 [7] 0.55 91.81

Improved

Adaboost [8]
0.31-1.79 90.04-90.88

Online

Mercer kernel

ART[1]
2.9-3.4 92-95

Our Method

MAdaboost
1.17-1.69 90.61-91.15

3.2. PSO-SVM algorithm

In these experiments, we simulate the distributed

IDS with 6 local units. For the PSO-SVM algorithm,

we used the following training sets for local models,

which only contain four low level kinds of attacks: nep-

tune, smurf, portsweep, and satan. The number of these

four kinds takes up 98.46% of the number of all kinds

of attacks from 10% training set of KDD CUP 1999.

The training set used for the fusion algorithms only

contains 4000 randomly chosen records, and the testing

sets for local and global models are the same, which

contain 284672 samples of above four kinds of attacks

and the normal kind of the network.

Table 4 shows that our combining algorithm greatly

improves the performance of the classifiers, and is su-

perior to the sum rule and SVM algorithm. Obviously,

the performance disparities between different local

models indicate that the sum rule isn‟t suitable for the

distributed IDS. When the number of local units in-

creases, the SVM algorithm used to combine all local

models would not only consume huge time and re-

sources, but also couldn‟t choose the best local model

combination to improve the performance. Through

dynamically combining a small portion of all local

models to obtain the global model, our PSO-SVM al-

gorithm effectively solves these problems, achieves the

better performance, and simultaneously reduces the

time consumption for detecting the intrusions.

Table 4 Results for distributed IDS of 6 units
Local models

FPR(%) DR(%)
No. Kinds of attacks

1 neptune 0.0825 26.48

2 smurf 0.0017 70.16

3 portsweep 0.1782 7.92

4 satan 0.0083 0.81

5 neptune, smurf 0.1997 99.54

6 portsweep, satan 1.8154 26.77

Global model (PSO-SVM) 0.3713 99.99

Sum Rule 0.0066 26.37

SVM 0.3944 99.98

4. Conclusion

In this paper, we have introduced a adaptive distri-

buted IDS framework based on the MAdaboost and

PSO-SVM algorithms, which can achieve the prefera-

ble performance compared with other offline and on-

line algorithms. In future, we will conduct some re-

search on the parameters combining for distributed IDS

framework to gain the better combining performance.

Acknowledgment

This work is partly supported by NSFC (Grant No.

60825204, 60672040) and the National 863 High-Tech

R&D Program of China (Grant No.2006AA01Z453).

References

[1] H.Lee, Y.Chung, and D.Park, “An adaptive intrusion detection

algorithm based on clustering and kernel-method”, Int. Conf. Adv.

Inf. Netw. Appl., 2004, pp. 603-610.

[2] M.E.Otey, A.Ghoting, and S. Parthasarathy, “Fast distributed

outlier detection in mixed-attribute data sets”, IEEE Trans. on

Knowledge and Data Engineering, May 2006, v12: 203-228.

[3] W.Lee, S.J.Stolfo, and K.Mok. “A framework for constructing

features and models for intrusion detection systems”, ACM Trans.

on Information an System Security, November, 2000, 3(4):227-261.

[4] Lei.Y, Ding X Q, Wang S J. “Visual Tracker Using Sequential

Bayesian Learning: Discriminative, Generative and Hybrid”, IEEE

Trans. on Systems, Man and Cybernetics, Part B, Dec. 2008,

38(6):1578-1591.

[5] J.Kennedy and R. Eberhart. “Particle swarm optimization”, In

Proceedings of IEEE International Conference on Neural Networks,

1995, volume 4:1942–1948.

[6] S.T.Sarasamma, Q.A.Zhu, and J.Huff. “Hierarchical kohonenen

net for anomaly detection in network security”, IEEE Trans. on

Systems, Man and Cybernetics, Part B, April 2005, 35(2): 302-312.

[7] B.Pfahringer, “Winning the kdd99 classification cup: Bagged

boosting”, SIGKDD Explorations, 2000, 1(2): 65-66.

[8] W. M. Hu and W. Hu, “Adaboost-based algorithm for network

intrusion detection,” IEEE Trans. on Systems, Man and Cybernetics,

Part B, April 2008, 38(2):577-583.

[9] Y.G. Wang, Xi Li, and W.M. Hu, “Distributed detection of

network intrusions based on a parametric model”, IEEE Int. Conf.

Syst., Man, and Cyber., Oct. 2008.

