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Abstract 
 

Due to the increasing demands for network security, 

distributed intrusion detection has become a hot re-

search topic in computer science. However, the design 

and maintenance of the intrusion detection system (IDS) 

is still a challenging task due to its dynamic, scalability, 

and privacy properties. In this paper, we propose a 

distributed IDS framework which consists of the indi-

vidual and global models. Specifically, the individual 

model for the local unit derives from Gaussian Mixture 

Model based on online Adaboost algorithm, while the 

global model is constructed through the PSO-SVM 

fusion algorithm. Experimental results demonstrate 

that our approach can achieve a good detection per-

formance while being trained online and consuming 

little traffic to communicate between local units. 

1. Introduction 

Over the past two decades, most algorithms for in-

trusion detection (ID) derive from the field of artificial 

intelligence, such as the statistics-based approaches, the 

data mining related approach, the neural networks and 

clustering methods. However, the aforementioned ap-

proaches have the following limitations. First, they are 

not directly applicable to data stream processing since 

these methods are trained offline. Second, they do not 

have the abilities of distributed processing. Compared 

with the centralized-based IDS, the distributed-based 

IDS is more popular and efficient in real world.  

In general, there are three main challenges that must 

be addressed in distributed IDS. First, as a result of 

privacy protection, the communication between local 

units should shield the original data containing the pri-

vacy information. Second, in order to reduce the occu-

pancy of network bandwidth, the communication traffic 

between local units should be as little as possible under 

the premise of keeping enough information to gain a 

global model. Third, how to effectively and efficiently 

combine all local models for improving the detection 

performance. 

There are several meaningful work about online and 

distributed ID so far. Lee et al [1] combine the online 

clustering algorithm ART with Concept Vector and 

Mercer-Kernel. Thus this algorithm is unsuitable for 

the high-capacity data streams because the model pa-

rameters are lack of stability. Otey et al [2] implement 

the online algorithm based on frequent itemset mining 

and further propose a general-purpose distributed out-

lier detection algorithm, but their algorithm consumes 

the huge memory to store the features of training data.  

In this paper, we present a distributed IDS frame-

work based on the MAdaboost and PSO-SVM algo-

rithms to address the above challenges. We actualize 

the online training and high efficiency fusion of the 

local models, while reducing the communication traffic 

between local units as much as possible by a parametric 

model based on Gaussian Mixture Model (GMM). 

The remainder of this paper is organized as follows. 

Section 2 introduces the framework for distributed in-

trusion detection. Section 3 reports the experimental 

results, and Section 4 concludes the paper. 

2. Framework of our distributed IDS 

 
Figure 1 Framework of our distributed IDS 
As shown in Figure 1, the framework of our distri-

buted IDS consists of the following three modules: 

  Data preprocessing: A set of data has to be labeled 

for training. They should contain both normal samples 

labeled as „+1‟ and attack samples labeled as „-1,-2…‟. 

Then the following three groups of features are ex-

tracted: basic features, content features, and traffic fea-

tures, as introduced in [3]. 



  Local model: The individual model for each local 

unit is constructed based on the online Adaboost and 

Expectation-maximization (EM) algorithms. The weak 

classifiers required by the Adaboost algorithm are con-

structed based on GMM. 

  Global model: After the global broadcast, all local 

models are combined together to form the global model 

based on PSO and SVM algorithms. Then, local units 

can construct a cascade classifier based on the global 

and local models to detect the intrusion or just use the 

fusion classifier based on the global model. 

2.1. Local model module 

A. Multiple Adaboost algorithm 

Our multiple Adaboost algorithm (MAdaboost) is 

the multiple-updating algorithm, which can update sev-

eral ensemble members simultaneously by using a 

training sample. 

The training sample is (x, y), where y∈{+1,-1,…}. 

H={ht | t=1,…T} is a set of  weak classifiers. {S
+
, S

-
, 

SC , Ct , λ
SC 

t , λ
SW 

t } are the parameters in the training 

processes, where {S
+
, S

-
} are respectively the numbers 

of the trained positive samples and negative samples; 

SC is the number of samples correctly classified by the 

strong classifier, compared with Ct for weak classifier 

ht. There are six steps in the MAdboost algorithm:  

1. Initialization. 
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2. Sort H= {hr1, hr2,…, hrT | ri∈{1,2,…,T}} by        

{fusion_εt} in ascending order for the next process.  
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3. Update {hri} with fusion_εri ≤ 0.5, according to the 

order in H={hr1 , hr2 ,… hrT }. 

Compute the iterations Pri for hri  

 *exp *( _ min_ )    (4)ri riP P fusion      

where min_ε=min{ fusion_εri }. 

Start the loop for hri : 

i. Set τ according to Poisson(λ), and update hri 

based on the Learn algorithm (see B. Weak clas-

sifiers) using the training sample τ times. 
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4. Update the {λ
SC 

t , λ
SW 

t  } of {ht } with fusion_ε t > 0.5 . 
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5. Compute SC using the past ensemble weights {ρt} 

before updating H  with the current sample, and 

compute the parameters {Ct}. 

6. The strong ensemble classifier : 
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The ensemble weights {ρt} are composed of εt and 

log(Ct/SC), which are different from the ones in the 

traditional Adaboost algorithm. log(Ct/SC) called 

“Contributory Factors” means the contribution rate of 

ht  to the strong classifier, and can tune the ensemble 

weights to attain the better detection performance. At-

tention is required that ρ
* 

t  equal to zero if ρ
* 

t  < 0. 

ς is the threshold for the strong classifier, which is 

determined by the average of the output values of a 

fixed window or empirically. 

B. Weak classifiers  

The weak classifiers, which are inputs of Adaboost 

algorithm, can be linear classifiers, Artificial Neural 

Networks (ANNs) or other common classifiers. In or-

der to decrease the communication traffic between lo-

cal units as much as possible, we construct the weak 

classifiers according to the GMM. The GMM can be 

described by several parameters, which means that the 

global broadcast only needs to include a set of sum-

mary parameters rather than all training samples. 

Suppose the number of features from training data is 

D, then there are D weak classifiers for the MAdaboost 

algorithm. For the behaviors labeling c, the GMM on 

the jth feature is: 
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where j∈[1,D] and c∈{+1,-1,-2,…} is the labels of the 

behaviors, in which the normal is labeled as +1. 

Then, the weak classifier on the jth feature is: 
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where W is the total class number of intrusions and can 

balance the importance of positive and negative sam-

ples as the weight of the conditional probabilities.   

The parameters of the GMM can be obtained 



through the EM or K-means algorithm. We use the 

Learn algorithm based on the sequential EM algorithm 

to solve this problem, which updates θ
y 

j  for τ times us-

ing a training sample (x, y). Limited to the length of the 

article, the details about this algorithm is showed in [4]. 

Attention is required that the Learn algorithm needs not 

call the weighted incremental PCA algorithm. 

2.2. Global model module 

Though the Local model module, we can gain the 

local model for every local unit: 

 , ,   (13)      

where ψρ={ρi | i∈[1,D]}, ρi is the ensemble weight for 

the ith weak classifier; ψθ={θ
c 

j | c∈{+1,-1,-2,…}, 

j∈[1,D]}, where θ
c 

j  is the parameters of the GMM; ς is 

the threshold for the strong classifier. 

We combine the Particle Swarm Optimization (PSO) 

and SVM algorithms to fuse the local models. By com-

bining the strong searching ability of PSO and the 

small sample learning ability of SVM, the local units 

can construct the global model just based on the small 

sample as fast as possible. The PSO-SVM pseudo-code 

is shown in Table 1.  

Table 1 PSO-SVM fusion algorithm 
Initialize:  
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Loop: 

1. If f(Pg)>max_fintness or iterations reaches the threshold 

value, exit. 

2. Construct the SVM classifier respectively for each par-

ticle Xi,n, and calculate the detection rate γ(Xi,n).  

3. Update {f(Xi,n)}
M 

i=1 . 

4. Update {Pli}
M 

i=1 and Pg . 

5. Update {Vi,n+1, Xi,n+1}
M 

i=1 . 

End 

Construct the ultimate SVM classifier for Pg. 

Suppose the number of local units is N. Construct a 

vector as (r1, r2,…rN), where ri is the result of the ith 

local unit for the current data. Attention is required that 

these results are in the range [-1, 1]: 
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     Limited to the length of the article, the details about 

PSO is showed in [5]. Compared with traditional PSO, 

there are two differences needed to attend. 

  The calculation of velocity : 
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where F() is a function to confine the velocity within a 

reasonable range: ||Vi,n|| ≤ Vmax.  
( 0.4)*( ) / 0.4 (16)w w Titer Iter Titer     

where Titer is the maximum iteration number and Iter 

is the current iteration. 

  The fitness value is evaluated as below: 

, ,( ) * ( ) (1 )*(| | | |) | | (17)i n i nf X X A L A       

where γ(Xi,n) is the detection rate of the classifier based 

on the SVM algorithm for the particle Xi,n; A is the 

number of all local units, and L is the number of local 

units chosen by the particle Xi,n. 

When the certain conditions are met, local models 

would globally broadcast their own local models. Then, 

each unit can construct the global model according to 

its own needs. If local units need the uniform global 

model, in the communication between all units, the 

shared information should include a small data sample 

besides the summary parameters. This sample can be 

constructed by randomly sampling from the local train-

ing data according to the proportion of various kinds of 

the network behaviors. If local units need the custo-

mized global model, the training data set would be ob-

tained just by sampling from its own training data. 

Once local units gain their own global model, the in-

trusions can be detected as follows: 

1. Use the local models included in the global 

model to detect the current data, and obtain the 

result vector [result1, result2,… resultL], L is the 

length of the global best particle Pg. 

2. Use the ultimate classifier (cascade or global 

classifier) to detect the current data. 

3. Experiments 

We utilize the KDD CUP 1999 data set which is 

condensed for IDS researches from DARPA. Four gen-

eral types of attacks are defined in this data set: DOS 

(denial of service), U2R (user to root), R2L (remote to 

local) and PROBE (surveillance).  

In our experiments, the parameters are set as follows: 

α=0.1, β=0.8, P=20, ς=0. In the following, we first 

show the results with different γ, and then compare the 

performance of our MAdaboost algorithm with those of 

the existing algorithms, and finally compare the per-

formance of our PSO-SVM algorithm with that of fu-

sion sum rule and SVM algorithm. 

3.1. MAdaboost algorithm 

As shown in Table 2, when γ ranges from 10 to 50, 

we can find that the moderate attenuation coefficient is 

important to the performance of the MAdaboost algo-

rithm. If γ is too small, the training data are equivalent 

to being used to train all weak classifiers equally; if γ is 

too large, the training data are equivalent to only being 

used to update the weak classifier with the minimal 

fusion_εt. When γ∈[20,30], we construct the better 

grade for the updating times of all weak classifiers.  



Table 3 shows the performances of some existing 

algorithms. Compared with the offline algorithms, our 

algorithm not only gains the satisfactory detection rate 

while keeping the lower false positive rate, but also can 

adaptively modify the local model in a real time man-

ner. Compared with the online algorithm, our algorithm 

gains the preferable performance, especially on the 

lower false positive rate. 

Table 2 Results of different γ 
  FPR(%) DR(%) 

10 12.87 92.50 

20 1.17 90.61 

25 1.69 91.15 

30 1.26 90.55 

40 0.37 88.28 

50 0.34 24.33 

Table 3 Results comparison for local units 

Methods FPR(%) DR(%) 

Offline 

Hierarchical 

SOM [6] 
2.19-3.99 90.94-93.46 

Bagged C5 [7] 0.55 91.81 

Improved  

Adaboost [8] 
0.31-1.79 90.04-90.88 

Online 

Mercer kernel 

ART[1] 
2.9-3.4 92-95 

Our Method 

MAdaboost 
1.17-1.69 90.61-91.15 

3.2. PSO-SVM algorithm 

In these experiments, we simulate the distributed 

IDS with 6 local units. For the PSO-SVM algorithm, 

we used the following training sets for local models, 

which only contain four low level kinds of attacks: nep-

tune, smurf, portsweep, and satan. The number of these 

four kinds takes up 98.46% of the number of all kinds 

of attacks from 10% training set of KDD CUP 1999. 

The training set used for the fusion algorithms only 

contains 4000 randomly chosen records, and the testing 

sets for local and global models are the same, which 

contain 284672 samples of above four kinds of attacks 

and the normal kind of the network. 

Table 4 shows that our combining algorithm greatly 

improves the performance of the classifiers, and is su-

perior to the sum rule and SVM algorithm.  Obviously, 

the performance disparities between different local 

models indicate that the sum rule isn‟t suitable for the 

distributed IDS. When the number of local units in-

creases, the SVM algorithm used to combine all local 

models would not only consume huge time and re-

sources, but also couldn‟t choose the best local model 

combination to improve the performance. Through 

dynamically combining a small portion of all local 

models to obtain the global model, our PSO-SVM al-

gorithm effectively solves these problems, achieves the 

better performance, and simultaneously reduces the 

time consumption for detecting the intrusions. 

Table 4 Results for distributed IDS of 6 units 
Local models 

FPR(%) DR(%) 
No. Kinds of attacks 

1 neptune 0.0825 26.48 

2 smurf 0.0017 70.16 

3 portsweep 0.1782 7.92 

4 satan 0.0083   0.81 

5 neptune, smurf 0.1997 99.54 

6 portsweep, satan  1.8154 26.77 

Global model (PSO-SVM) 0.3713 99.99 

Sum Rule 0.0066 26.37 

SVM 0.3944 99.98 

4. Conclusion 

In this paper, we have introduced a adaptive distri-

buted IDS framework based on the MAdaboost and 

PSO-SVM algorithms, which can achieve the prefera-

ble performance compared with other offline and on-

line algorithms. In future, we will conduct some re-

search on the parameters combining for distributed IDS 

framework to gain the better combining performance.  

Acknowledgment 

This work is partly supported by NSFC (Grant No. 

60825204, 60672040) and the National 863 High-Tech 

R&D Program of China (Grant No.2006AA01Z453). 

References 

[1] H.Lee, Y.Chung, and D.Park, “An adaptive intrusion detection 

algorithm based on clustering and kernel-method”, Int. Conf. Adv. 

Inf. Netw. Appl., 2004, pp. 603-610. 

[2] M.E.Otey, A.Ghoting, and S. Parthasarathy, “Fast distributed 

outlier detection in mixed-attribute data sets”, IEEE Trans. on 

Knowledge and Data Engineering, May 2006, v12: 203-228. 

[3] W.Lee, S.J.Stolfo, and K.Mok. “A framework for constructing 

features and models for intrusion detection systems”, ACM Trans. 

on Information an System Security, November, 2000, 3(4):227-261. 

[4] Lei.Y, Ding X Q, Wang S J. “Visual Tracker Using Sequential 

Bayesian Learning: Discriminative, Generative and Hybrid”, IEEE 

Trans. on Systems, Man and Cybernetics, Part B, Dec. 2008, 

38(6):1578-1591. 

[5] J.Kennedy and R. Eberhart. “Particle swarm optimization”, In 

Proceedings of IEEE International Conference on Neural Networks, 

1995, volume 4:1942–1948. 

[6] S.T.Sarasamma, Q.A.Zhu, and J.Huff. “Hierarchical kohonenen 

net for anomaly detection in network security”, IEEE Trans. on 

Systems, Man and Cybernetics, Part B, April 2005, 35(2): 302-312. 

[7] B.Pfahringer, “Winning the kdd99 classification cup: Bagged 

boosting”, SIGKDD Explorations, 2000, 1(2): 65-66. 

[8] W. M. Hu and W. Hu, “Adaboost-based algorithm for network 

intrusion detection,” IEEE Trans. on Systems, Man and Cybernetics, 

Part B, April 2008, 38(2):577-583. 

[9] Y.G. Wang, Xi Li, and W.M. Hu, “Distributed detection of 

network intrusions based on a parametric model”, IEEE Int. Conf.  

Syst., Man, and Cyber., Oct. 2008.  


