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ABSTRACT 
Clustering ensembles combine different clustering solutions into a 
single robust and stable one. Most of existing methods become 
highly time-consuming when the data size turns to large. In this 
paper, we study the properties of the defined ‘clustering fragment’ 
and put forward a useful proposition. Solid proofs are presented 
with two widely used goodness measures for clustering ensembles. 
Finally, a new ensemble framework termed as fragment-based 
clustering ensembles is proposed. Theoretically, most of existing 
methods can be improved by adopting this framework. To 
evaluate the proposed framework, three new methods are 
introduced by bring three popular clustering ensemble methods 
into our framework. The experimental results on several public 
data sets show that the three introduced methods are greatly 
improved in computational complexity and also achieved better or 
similar accurate results than the original methods.   

Categories and Subject Descriptors 
H.2.8 [Database Management]: Database Applications – Data 
mining; 1.5.3 [Pattern Recognition]: Clustering – Algorithms 

General Terms 
Algorithms, Experimentation, Theory 

Keywords 
Clustering Ensembles, Fragment, Mutual Information 

1. INTRODUCTION 
Clustering ensembles, also known as consensus clustering or 
clustering aggregation, have emerged as a powerful method to 
combine multiple inconsistent clustering solutions. Many 
applications arisen in various settings and from different 
disciplines can be transferred into the problem of clustering 
ensembles. Some typical applications are: categorical data 
clustering, heterogeneous data clustering, outlier detection, 
distributed clustering, knowledge reuse and aggregating 
clusterings of different methods [1]. There have been a great 

number of clustering aggregation methods in the literature, which 
can be roughly classified into: voting based methods [2], graph-
based methods [3], mixture model based methods [4] and 
searching based methods [1].  

We note that the computational complexity of clustering 
ensembles usually depends on the data size. Many existing 
clustering ensemble methods are quadratic of the data size. With 
the data size increasing, these methods become highly time 
consuming and are unable to be applied in real applications. This 
reminds us that if the data size is decreased before employing the 
ensemble algorithm, the time consumption can be reduced.  

Each clustering can be viewed as a partition of the original data. 
We find that the whole data set consists of data subsets (named as 
‘clustering fragment’) in which data points keep together in all of 
the input clustering. We call such subsets as ‘clustering fragments 
(or fragments for simplification)’. In many clustering ensemble 
problems, the number of produced fragments is far smaller that 
the original data size. Naturally, an interesting question is arising: 
can we solve the clustering ensemble problem merely based on 
the fragments? If the answer is ‘YES’, the computational 
complexity of aggregation on fragments should be much lower 
than that of existing methods. We propose a useful proposition to 
answer the question. The proposition is proved within two widely 
used goodness measures. Then a fragment-based ensemble 
framework is introduced. Experimental results demonstrate that 
the new methods which are based on the proposed framework 
outperform the original methods significantly in time complexity 
and achieve better (or similar) results than the original ones. 
The remainder of this paper is organized as follows. Section 2 
states the clustering fragment extraction algorithm. Section 3 
provides our main theory and corresponding proof. Section 4 
introduces the fragment based clustering ensemble framework and 
proposes three new methods by modifying existing ones. Section 
5 gives our experimental evaluations on several public data sets 
and some discussions. Conclusions are given in Section 6. 

2. EXTRACTION ALGORITHM 
This section introduces the ‘clustering fragments’ extraction 
algorithm. Some symbols used in the paper are defined as follows.  

Let X = {x1, x2, … , xn} denote a set of data points. П = {π1, π2, …, 
πH} be a set of H input partitions of X. Each partition indicates a 
clustering and πi (xj) denotes the label assigned to xj by the i-th 
partition. Let |πi | be the number of clusters given by the i-th 
partition. We denote the cluster set as Ci with respect to the i-th 
partition πi. Then Cij means the j-th cluster obtained by the i-th 
partition. Let F represent the set of fragments. 
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Figure 1. (a), (b) and (c) are three different partitions and (d) is the union of all the three partitions.  

For each data point, its labels given by the partitions П form a 
label sequence, for example, ‘π1 (xj) π2 (xj)…πH (xj)’. We are able 
to get each point’s label sequence by accessing each partition 
once. If suitable data structure is used, the time complexity is O 
(n*H), where N represents the number of produced fragments. 
Table 1 shows the pseudo code of the extraction algorithm. 
In Fig. 1, there are approximately 1000 data points. Three 
different partitions achieved by different clustering algorithms are 
given in Fig.1 (a), (b) and (c). Fig.1 (d) shows the produced 
fragments which are enclosed by blue lines and borders. The 
number of fragments is 11 which are far less than the data size 
1000. It can be easily observed that the points in the same 
fragment keep together in each partition in Fig.1 (a), (b) and (c).  

3. THE MAIN THEORY AND PROOF 
The previous section has introduced the clustering fragments’ 
extraction algorithm. This section presents our theory about 
whether the clustering aggregation can be achieved directly on 
fragments. We give proof for our theory under two widely used 
goodness   measures   in   clustering   ensembles. The first is the 
distance criterion proposed by Ginois [1]. The distance is used to 
measure the disagreement between two clustering. With this 
criterion, clustering ensemble becomes an optimization problem 
to find a new partition with the minimized total distance. Studies 
in [5, 7] are based on the  distance criterion. The  second  measure 

 
Table 1. Pseudo code of fragment extraction 

Input: X = {x1, x2, … , xn}, П = {π1, π2, …, πH} 
Output: Fragments 
Steps: 
1.   Initialization: string Ls(j) =φ , i = 1 : n;  

2.                   map<string, list<integer>>  F; 
3.   for each partition  πi  do 
4.        for each data point xj do 
5.               Ls (j)  = Ls (j) ∪ πi (xj) 
6.        end for 
7.   end for 
8.   for j =1 : n 
9.        if (l= F.find (Ls(j))) == null 
10         generate a new integral list and insert j into the new list; 

then insert the Ls(j) and the new list into F. 
11.      else 
12.        insert j into list l.     
13.  end for                      
14.  return F. 

is the mutual information criterion. This criterion applies mutual 
information to measure the agreement between two clustering. 
Studies in [2, 6] apply this criterion.  

3.1 The Main Theory 
Our theory can be summarized as the following proposition. 
Proposition: Let π* be the optimal partition via clustering 
aggregation. All the data points located in the same clustering 
fragment definitely share the same label in π*, or saying they are 
definitely in the same cluster of π*. 
Intuitively, the above proposition is reasonably true. However, 
without a universal goodness measures for any candidate partition, 
it is difficult to give a direct proof. We note that most existing 
methods aim to optimize the distance criterion or mutual 
information criterion. If the proposition is proved to be true under 
these two measures, our new framework is adaptable to most of 
existing methods. We then introduce two theorems. 

Theorem 1. Let π* be the optimal partition under the distance 
criterion, the proposition is true. 

Theorem 2. Let π* be the optimal partition under the mutual 
information criterion, the proposition is true. 
The following subsection will give the proof. 

3.2 The Proof 
Due to lack of space, we only give the proof sketch (Detailed 
steps are given in the full version of this paper).  

3.2.1 The Proof of Theorem 1 
Assuming that, on the contrary, we get a candidate partition πa 
and that there exists at least one fragment whose points scatter in 
different clusters of πa. We denote one of the scattered fragments 
as Fs and the point subset of Fs in the m-th cluster of πa as ( )m

sX . 
Now we focus on two arbitrary clusters m1 and m2 given by πa. 
We introduce the following Lemma using the above assumptions. 

Lemma 3. The goodness of πa can be increased through one of 
the two operations: 1) transfer data in ( 1)m

sX
 into cluster m2 or 2) 

transfer data in ( 2)m
sX

 into cluster m1. 

Proof. Please refer to the full version of this paper. 

Lemma 4. When using distance criterion to measure the 
goodness of a candidate partition, there never exists an optimal 
partition in which points from the same fragment are scattered in 
different clusters.  

Proof. Assuming there is an optimal partition π* which places 
points of a fragment into different clusters. According to Lemma 



3, the goodness of π* can be increased, which indicates that π* is 
not an optimal partition.  
As a result, Theorem 1 is true according to Lemma 4. 

3.2.2 The Proof of Theorem 2 
We still assume that there is a candidate partition (πa) as the same 
as the one in previous subsection. It has two variations: π′ and π″. 
One (π′) is produced by transferring data in ( 1)m

sX
 into m2; the 

other (π″) is produced by transferring data in ( 2)m
sX

 into m1. 

Lemma 5. Without loss of generality, we assume Ф(π″) ≥ Ф(π′). 
In this case, Ф(π″) > Ф(πa). 

Proof. Please refer to the full version of this paper.                      

Lemma 6. When using mutual information criterion, there never 
exists an optimal partition in which points from the same 
fragment are scattered in different clusters. 

Proof. Assuming there is an optimal partition π* which places 
points of a fragment into different clusters. According to Lemma 
5, the goodness of π* can be increased, which indicates that π* is 
not an optimal partition.  
As a result, Theorem 2 is true according to Lemma 6. 

4. FRAGMENT-BASED CLUSTERING 
ENSEMBLES 
Intuitively, Proposition 1 will hold under any goodness measures. 
However, Theorem 1 and Theorem 2 are still very useful due to 
that most current methods are based on these two measures. Since 
the optimal partition is a combination of the fragments, the 
optimal partition can be deduced directly by managing points of a 
fragment as a whole. This approach can be summarized as the 
fragment-based clustering ensemble framework shown in Figure 2.  
We present three new methods by modifying three existing 
typical ones to evaluate the proposed framework in the paper: 
Agglomerative, Furthest and Local Search (Their details can refer 
to [1]). To differ from the original methods, the terms of the new 
ones are added by the prefix ‘F-’. We only take F-Agglomerative 
as an example to illustrate the implementation details shown in 
Table 2 due to limited space. The other two methods (F-Furthest 
and F-Local Search) have the similar procedures and can be found 
in the full version of the paper. The complexity of Agglomerative 
is O(n2H) + O(n2logn). Thus the complexity of F-Agglomerative 
is O(nH) for fragment extraction and O(N2H) + O(N2logN) for 
running the aggregation method. It is obvious that the complexity 
can be greatly reduced if N << n. This conclusion is still available 
for F-Furthest and F-Local Search. 

5. EXPERIMENTS 
This  section  reports the results  of  the  proposed fragment-based 

Table 2. Steps of F-Agglomerative 

 
ensemble methods as well as the original ones on six public data 
sets from UCI Repository [8]: Hayes-Roth (#1), Glass (#2), 
Breast (#3), Yeast (#4), Wave (#5) and Magic (#6).  
We employ running time as well as both the classification error Ec 
and disagreement error Ed defined in [1] to evaluate results of   
each method. Ec is defined as: 
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π
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where mi denotes the size of the majority class in cluster Cπ,i.  
Because Hayes-Roth is a category data set, the input partitions are 
generated according to each of its attribute. For other sets, the 
input partitions are obtained by using K-means algorithm with 
different initialized number of centers.  
Figure 3-5 show the running time of the three pairs of algorithms 
over the six data sets. It can be observed when the size is 160, the 
running time of original methods nearly equals to that of 
fragment-based ones. The main reason is that fragment-based 
methods need to extract fragments and the time-consumption of 
fragment extraction can not be ignored compared with the 
following fragment ensemble when the size is 160. However, with 
the data size increasing; the time-consumption of fragment 
extraction occupies little proportion. As a consequence, the 
running time of original methods increase sharply while that of 
the fragment-based methods maintains very small. 
Figure 6-8 show the performance comparison between the three 
pairs of algorithms respectively in terms of Ec. It can be observed 
that the fragment-based methods achieve comparable or better 
results than the original ones through the six data sets except the 
Wave set (#5). For the Wave set, both F-Agglomerative and F-
Furthest are inferior to their original methods. The discussion part 
will give an analysis. 
Table 3 shows the performance comparing between the three pairs 
of algorithms respectively in terms of Ed. We can observe that in 
most cases, the fragment-based methods yields lower error. Three 
exceptional cases are bold and italic-represented. 
The experimental results over the six data sets show the 
satisfactory performance of the fragment-based ensemble methods, 
which is consist with our theoretical analysis in time complexity 
of fragment-based framework. We observe that the running time 
of fragment based methods mainly depends on the number of 
fragments and appear to be insensitive to the size of point set. 

Input : X = {x1, x2, … , xn}, П = {π1, π2, …, πH} 
Output: clusters 
Steps: 
(1) Extract fragments using the algorithm in Table 1; 
(2) Place each fragment in a single cluster; 
(3) Calculate the average distance between each pair of clusters 

and choose the smallest average distance and the 
corresponding pairs of clusters; 

(4) Merge the corresponding clusters and go to (3) if the smallest 
distance is below 0.5. Otherwise, go to next step. 

(5)   Output the current obtained clusters. 

 Ensemble on 
Fragments  π1 

 
πH
 
 

…
 

Figure 2. The fragment-based ensemble framework 

 Fragment 
Extraction 

 Clusters



Table 3. Ed of different methods over the six data sets. 

Method #1(×103) #2(×103) #3(×105) #4(×105) #5(×106) #6(×108) 

Agglomerative     9.04     5.35       1.39 6.28 8.23 4.130 
F- Agglomerative      9.41     5.27 1.35 6.20 8.20 4.130 

Furthest 12.94 6.26 1.38 22.16 8.50 4.496 
F-Furthest 9.45 5.27 1.35 8.17 12.21 4.247 

LocalSearch      8.92     5.17 1.42 6.05 8.40     4.135 
F- LocalSearch      8.92     5.17 1.35 6.07 8.16 4.127 

            Figure 7. Ec  
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Figure 6. Ec  
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Figure 5. Running time 

0.01

0.1

1

10

100

1000

10000

100000

1000000

160 214 569 1484 5000 19020

Data size

Ti
m

e(
s)

LocalSearch

F-LocalSearch

0.01

0.1

1

10

100

1000

10000

160 214 569 1484 5000 19020

Data size

Ti
m

e(
s)

Furthest
F-Furthest 

 

6. CONCLUSIONS 
This paper defines the ‘clustering fragment’ and studies its useful 
properties. Based on the clustering fragments, we propose a new 
clustering ensembles framework: fragment-based clustering 
ensembles. This framework is based on the proposition that an 
optimal partition should ensure the data points of a fragment 
locate in the same cluster. We have proved this proposition under 
two widely used goodness measures: distance measure and mutual 
information measure. Because the size of fragment set is usually 
far smaller than the data size, existing methods can be improved 
with respect to the time complexity. Theoretically, most of 
existing methods can be improved by bring into this framework. 
To utilize the efficiency of the proposed framework, three new 
ensemble methods are presented, i.e. F-Agglomerative, F-Furthest 
and F-LocalSearch. We conducted experiments on six public data 
sets. The results show that the three new methods significantly 
outperform their original methods in terms of running time, which 
demonstrates the efficiency of our framework.  
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