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Abstract 
 
We propose a new motion dynamics approach to solve 
the PnP problem, where a dynamic simulation system 
is constituted by springs and balls. The equivalence 
between minimizing the energy of the dynamic system 
and solving the PnP problem is proved. With the 
assumption of the existence of resistances, the solution 
of the original PnP problem can be solved through the 
simulation of the process of the movement of the balls. 
 
 
1. Introduction 
 
The Perspective-n-Point (PnP) problem is the problem 
of determining the position and orientation of a 
camera, namely  t and R, given its intrinsic parameters 
and 3D world coordinates iW and their corresponding 
2D image coordinates ( )1,...,i i N=p  of N points. 
Various approaches are reported, including linear 
methods and iterative optimization methods. Such as 
the works of Quan and Lan [2], Fiore [3], Lu et al.[4], 
and Harley and Kahl [8]. 
Let iC  be the camera coordinate of the ith point. 
Without noise, the following equations strictly hold: 

( ) [ ], ;1i i i i iR α= + =C W t C p  
As the presence of noise, the R and t, which let the 
above equations hold for all of the N points, do not 
exist. As the intrinsic matrix of the camera is known, 
each image point corresponds to a ray iv , from the 
optical center to the ith image point.  
The main idea of almost all of the existent methods to 
solve the PnP problem is to minimize one of the 
following cost functions, or some kinds of distances 
between points to the corresponding rays.  
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The term ( ) xdir x x=  means the direction of x . 

These functions have their proper geometric 
interpretations. Function (1) is the 3D Euclidean space 
distances between the 3D points to the corresponding 
rays. Function (2) is the distances between the 
projections of the 3D points on the image plane, with 
the optical center as the center of projection, and their 
image points, which are also the intersections of the 
corresponding rays and the image plane. Function (3) 
approximately indicates the norm of the angles 
between the lines, connecting 3D points and optical 
center of camera, and the corresponding rays. Among 
the three cost functions the function (1) and function 
(2) are often used, because of their statistical 
properties. 
The three cost functions, listed above, are in the form 
of the sum of squares of the Euclidean norm of some 
kind of distances. Inspired by the form of these cost 
functions, we construct some dynamic systems, and 
make the energies of the dynamic systems have the 
same form as that of the cost functions listed above. 
First, we assume the N 3D points as N ideal balls, 
whose radii are zero, with unit weights. The camera 
coordinates of the initial positions of these balls are 
their world coordinates. The distances between every 
two balls are constant, so all of the balls constitute a 
rigid body. Then we establish the relation between 
every ball and its corresponding ray, by connecting 
them with a spring in some manner directly or 
indirectly. With specific arrangement of springs, we 
can prove that the potential energies of systems have 
the same forms as that of the listed cost functions.  
We assume the original length of the every spring is 
zero. The force of the spring is determined by the 
length of the spring. And let the rigid body, constituted 
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by the balls, moves under the action of the forces of 
springs and some kind of resistances. As the presences 
of resistances the rigid body stops at the equilibrium 
position, where the system has the minimal potential 
energy. 
 
2. The Motion Dynamics Approach 
 
2.1 The relation between the arrangement of 
springs and the energy of the system 

 
The energy of the ith spring is 2

iE k= L . iL  is the 
length of the ith spring, and k  is the coefficient of 
elasticity of the ith spring. The length of the springs 
are determined by the positions of the balls, which, in 
turn, are determined by R and t . 
Assume that the camera coordinate of the ith point is: 

( )
'

i i i i iR x y z⎡ ⎤= + = ⎢ ⎥⎣ ⎦
C W t  

The force of ith spring is: 

( )
'

, i i i
i i

i i i

E E E
F R E

x y z
⎡ ⎤∂ ∂ ∂

= −∇ = − − −⎢ ⎥∂ ∂ ∂⎣ ⎦
t  

In the following sections, we arrange the springs in 
two different ways, forming two dynamic systems. In 
turn, the energies of the two systems correspond to the 
cost function (1) and cost function (2).  

 
2.1.1 Minimize Space Distance Suppose one end of a 
spring is connected with a ball, and the other end is 
connected with the nearest point in the corresponding 
ray iv . So, the length of the spring is the distance of 
the ball to the ray. The distance is expressed by the 
following equation: 
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If the condition of ( )' 0i iR W + ≥v t  is satisfied, the angle 
between the ray, from the origin of the camera 
coordinate to the ith ball, and the ith image point’s ray 
is an acute angle. Therefore, the distance between the 
ball and the corresponding image point’s ray is the 
distance between the ball and the line, which the ith 
image point’s ray lays on. If the above condition is not 
satisfied, the angel between the above two rays is an 
obtuse angel. So the distance between the ith ball and 
the ith image point’s ray is the distance between the 
ball and the origin of the camera coordinate, which is 
also the starting point of every ray.  
For every point iW , the force of the connecting spring 
is: 

( ) ( ) ( ) ( )( )
( ) ( )( )
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The function ( )U x  is a step function: 
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The ith spring’s energy is as follows: 
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The energy of the whole system is: 

( ) ( )
1

, ,
N

i
i

E R E R
=

= ∑t t  

For the algorithm initialization, we can use some 
linear algorithm to get an initial solution. We use the 
camera coordinates of balls, in the initialization step, 
as the initial positions of balls. Therefore, in most of 
the situations, the angles described above are acute 
angles. So the second term of the right part of equation 
(5) vanishes. In the following section, we just assume 
the angles are acute angles. So the form of iL  is 
different from that of equation (4). 
 
2.1.2 Minimize Image Distance Suppose that all of 
the springs lay on the image plane, and each 3D point 
connects the optical center with a stick. Let the ball be 
able to only move alone the stick. The stick can rotate, 
with one end fixed on the optical center of the camera. 
A spring connects the image point and the stick. One 
end of the spring connects the image point, and the 
other end connects the intersection of the 
corresponding 3D point’s stick and the image plane.  

Suppose: [ ]i i
i i i i i i i

i i

x yu u v v with p u v
z z

Δ = − Δ = − =  

The length of the ith spring is: 
( )[ ] ( )[ ] 2 21 : 2 / 3i i i i i iR R u v= + + − = Δ + ΔL W t W t p

 
The force imposed on the ith ball is  

'

2 2

2 2 22i i i i
i

i i i i

u u x vyvk
z z z z

⎡ ⎤− Δ Δ Δ− Δ= ∗ +⎢ ⎥
⎣ ⎦

F  

The ith spring’s energy is as following: 

( )2 2

1 1 2

N N

i i i
i i

kE E u v
= =

= = Δ + Δ∑ ∑  

 
2.2 Simulation process of the dynamic system 
 
Our algorithm solves the PnP problem by simulating 
the motion of the rigid body, constituted by the balls, 
to get the equilibrium position. First, take the world 
coordinates of the points as the initial camera 
coordinates of the positions of the balls. As mentioned 
before, in practice, we use the camera coordinates 
obtained from some linear algorithm, such as DLT, as 
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the initial values. Calculate the force imposed on each 
ball by the corresponding spring, directly or indirectly. 
Then calculate the resultant force F  and the resultant 
torqueτ , imposed by all the springs, on the rigid body. 

1 1 1

1, , , , ,
N N N

i i i i i i i i
i i iN

τ τ τ
= = =

= = = − = × =∑ ∑ ∑F F C C r C C r F

 
From the resultant force and the resultant torque, we 
get the acceleration a , moment of inertia I and angular 
accelerationα  of the rigid body. 

( ) ( )
2

1 1
, ( ) ,*

N N

i i
i i

a I I m dir IN m
ττ α

= =
= = = − × =∑ ∑F C C  

Set a small TΔ step. And let the center of mass move 
as a uniformly accelerated motion. At the same time, 
the whole rigid body rotates with a uniform angular 
acceleration. The axis of the rotation is passing 
through the mass of center. The acceleration and 
angular acceleration are calculated at the beginning of 
the period of time TΔ , as mentioned above. So, after 
each period of time TΔ , we have: 

2 20.5 , 0.5a T a Tθ α αΔ = ∗ ∗Δ ∝ Δ = ∗ ∗Δ ∝C  
So, we can get the rotation matrix corresponding to 

θΔ . 
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Therefore, the relation between the position of the ith 
ball at the ( )1k T+ Δ  moment and that at the k TΔ  
moment is as follows: 
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To ensure that the rigid body system can stop at the 
equilibrium position, we have to impose some kind of 
resistances to the system at each iteration step. So 
forces, opposite to the directions of the movements of 
the balls, are imposed, which are short-lived but with 
very large magnitudes to make the balls stop instantly. 
We pose the impulses at the end of each TΔ , making 
the balls’ velocities be zero. And the impulses are 
ideal, making the balls stop at once. So the movements 

of the balls are zero, during the period of the time of 
impulses.  
The iterative step will terminate, if the value of the 
cost function is below a small threshold or the number 
of the iterations is larger than a preset value. And the 
equilibrium positions of the balls are the camera 
coordinates of the points. Then, we calculate the R and 
t between the world coordinates of the points, which 
are the initial camera coordinates of the balls, and the 
final camera coordinates of the points. By: 
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2.3 Proof of convergence 
 
The energy of the system is: 

( )
1

N

i i
i

E E
=

=∑ C  

The difference between the energies before and after 
the kth iteration is: 

( ) ( )1 1
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N N
k k k k k k
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E E E E E E E+ +

= =
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Since the chosen parameter TΔ is small, EΔ can be 
approximated by its first order Taylor expansion.  
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So: 

1k kE E+ ≤  
So algorithm will converge with any initialization.  
Since the proof is not limited to the specific form of 
the energy, the convergent property is suitable for all 
the dynamics system. As a result, our algorithm can be 
applied to other problems. 
3. Experimental result 
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Both real data experiments and simulations are carried 
out. We use function (2) as the cost function. 
We use corners of a calibration block as the 3D points 
to test our approach and compare our approach with 
other methods. The coordinates are established in the 
following way.  The origin of the world coordinate is 
one corner of the calibration cubic, and the coordinate 
axes are along the edges of the calibration cubic.  
The image residuals and the space residuals of five 
methods, in the real data experiment, are listed below: 

 LM Motion 
Dynamics 
Approach 

Fiore’s 
approach 

Lu.e.t’s 
approach 

DLT 

Picture 
error 

8.7671
72e-04 

8.7529e-
04 

0.001782 8.7666931
e-04 

0.0061 

Space 
error 

0.0161
858871 

0.0161548
3383937 

0.0334978
115901 

0.0161548
6256646 

0.0353
704378 

 

 
 

Figure 1. Picture of a Calibration Block 
 

With the real data, the image and space residuals of 
our algorithm are smaller than that of the other 
algorithms. 
At the simulation experiments, we generate the 
simulation data in the following way. The 3D points 
are the corners of a hypothetical calibration block. The 
coordinates are established in the same manner as that 
of the real data experiment. And the distance of the 
camera to the cubic is about 1.5 times of the edge 
length of the cubic. We add isotropic Gaussian noise 
on the image coordinates. And the magnitudes of the 
noises are about the 3 210 ~10− −  times of the size of the 
image of the cubic. Practically, if we assume that the 
noises only exist on the image coordinates, the 
calibration blocks are widely used.  
The simulation experiment results are shown in 
Figure2 and Figure 3. In Figure2 and Figure 3, the 
blue lines are the results of the motion dynamics 
approach. The black lines are the results of the 
algorithm of Lu et al.[4]. The yellow lines are the 
results of LM algorithm. The red lines are the results 
of Fiore’s [3] algorithm. The green lines are the results 
of DLT algorithm. We compare the residuals of image 
points and space points, and the mean error of R, t, of 
the above algorithms. As the precisions of R, t of 
iterative methods are much better than that of linear 
methods, we only compare that of the iterative 
methods.  
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The simulation experiments show that the precision of 
R and t and the residuals of space points and image 
points solved by the motion dynamics approach is 
almost the same as that of the best algorithm of LM 
and Lu et al.’s algorithm, and much better than the 
Fiore’s algorithm and DLT algorithm. 
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