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ABSTRACT
There is plenty of structured information (such as lines and

planes) in urban scenes. Considering this, we propose a new

method for making use of this information to enhance the re-

construction of urban outdoor scenes. Structured informa-

tion (collinearity and coplanarity) is extracted from images

by performing line detection and color image segmentation,

which is used as hypothetic constraints of the 3D structure. In

refining stage, we first build PCA subspaces for each struc-

tured components (collinear and coplanar point sets), during

which the former hypothetic structure information is further

inspected by the initial 3D structure. Then we iteratively up-

date the structure through EM estimation. Experiments show

that this method effectively improves the accuracy and robust-

ness of reconstruction of urban scenes.

1. INTRODUCTION

Fully automated reconstruction of urban outdoor scenes is

gaining increasing attention in recent years. Algorithms

for solving this problem can be roughly classified as either

model-based approaches, or dense/quasi-dense approaches.

For model-based methods, some of them build CG archi-

tecture models [1, 2, 3], and others use simple geometric

primitives [4]. The former need building mask and 3D lines

to segment out building blocks. While the later use some sim-

ple rules, such as restricting the geometry to vertical(gravity

direction) ruled surfaces [4] and plane sweeping algorithms.

Some of them yield very impressive results, however, the

problem of accurately segmenting building blocks is ex-

tremely challenging, which relies heavily on obtaining dense,

accurate stereo or user-aids. Dense/quasi-dense approaches

[5, 6, 7], on the other hand, focus on high resolution 3D

models and do not use specified structure constraints. It does

preserve all the inner structures under perfect reconstruction.

However, the corresponding problem, i.e. relating images

by matching detected features, is an ill-posed problem, of

which the corresponding points can be contaminated with

noise, wrong matches and outliers. As a result, some inner

structures of the reconstructed points may not be preserved,
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especially the coplanar structure which is very common in

urban environment.

(a) first view (b) second view

Fig. 1. Merton College.

We attempt to adjust this noised reconstruction result and

are motivated by the observation that, as illustrated in Fig.

1, there are plenty of planar structures in urban scenes, and

many of them are consistent with color coherence and similar-

ity. Though it is not an absolute criterion and many counter-

examples may exist, we try to make use of this extra infor-

mation, which can be effectively extracted from images by

performing segmentation.

Given a set of images of a scene, we first use structure-

from-motion [8] to compute camera parameter and dense/quasi-

dense method [5, 9, 10] to obtain initial dense/quasi-dense 3D

points. Meanwhile, we perform color image segmentation,

line detection and matching. With these extra information, we

classify the matched feature points into collinear and copla-

nar grouping sets. Next, we build PCA subspaces for each

grouping set of 3D initial points, and find out outlier planes as

well as ambiguous points according to eigenvalues and PCA

projection distances. Finally, we perform planar adjustment

for inlier groups of points and for ambiguous points, we ex-

press them in a mixture PCA form and iteratively update them

through EM estimation. Finally, non-convergent ambiguous

points are eliminated as outliers.

To evaluate the proposed method, we carry out experi-

ments on real scene images of open data source (VGG website

[11]). Section 2 introduces in detail our structure refinement

algorithm. Experimental results are given in Section 3 and the

paper is concluded in Section 4.
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2. PCA-BASED STRUCTURE REFINEMENT

Our structure refinement is essentially a statistical inference

process, which estimating the inhomogeneous 3D coordinates

of feature points from noised initial structure. Initialization

could be performed by different popular methods, in our ex-

periment, we initialize the 3D structure as follows:

We first use Bundler Structure from Motion package [12]

to compute camera parameters. Then we use quasi-dense

[9, 10] method (or PMVS [5] software, refer to section 3)

to locate quasi-dense matched feature points and to obtain an

initial 3D structure.

We then perform color image segmentation using statis-

tical region merging [13]. With the segmentation result and

quasi-dense feature points, we select those segments with at

least 5 feature points located on and refer to the corresponding

3D points as coplanar points.

We also use edge detector to detect line features and

match them using MSLD [14]. For each matched line pair,

we sample matched point features along them by the method

shown in Fig. 2. First uniformly sample point features along

the matched line in the first view. Then, for each sampled

point, intersect its epipolar line with the matched line in the

second view and search for its matched point in the linear

neighborhood of the intersection point. We also initialize

corresponding 3D points of these matched pairs and refer to

them as collinear points.

Our structure refinement is designed towards these two

kinds of selected 3D points. We denote them as • =
{Xn}, n = 1, · · · , N . We then build grouping sets of

these points, according to their collinearity or coplanarity.

We denote a grouping set by • k, • k ⊂ • , k ⊂ κ, e.g.

• 1 = {X5,X9, · · · }. κ = {1, · · · ,K} is the index set of

{• k}, also, κ = κl

⋃
κp, κl and κp denote index sets of

collinear grouping sets and coplanar grouping sets respec-

tively.

(a) first view (b) second view

Fig. 2. Sample point features on matched line pair.

2.1. Building PCA subspaces for Initial Structure

By previous stages, we have already obtained initial 3D

structure • = {X1, · · · ,XN} and grouping sets • k, k =
1, 2, · · · ,K. We then perform principal component analy-

sis (PCA) on each grouping set • k, i.e. equivalently per-

forming SVD on the transformed point matrix of inhomoge-

neous coordinates. For each group, we get a centroid point

C(k) = 1
|• k|

∑
Xn∈• k

Xn, three eigenvalues (λ
(k)
1 , λ

(k)
2 , λ

(k)
3 )

(supposing descending sorted) and their corresponding eigen-

vectors (e
(k)
1 , e

(k)
2 , e

(k)
3 ). We can infer structure information

of this grouping set from the eigenvalues:

For a grouping set of collinear points, λ1 is supposed to

be distinctively large, while λ2 and λ3 approximate to zero

compared with λ1. We set a threshold (adaptively selected)

for this criterion, to decide whether this grouping set is ac-

cepted as an inlier collinear set.

For a grouping set of coplanar points, both λ1 and λ2

should be distinctively large and λ3 should approximate to

zero. We also set a threshold for this criterion to decide

whether this coplanar set obtained from image segmentation

is acceptable. We should also consider the degenerate situa-

tion here, i.e. λ1, λ2, λ3 satisfy the collinear situation, which

indicates that this group of points distribute almost linearly

on a plane.

2.2. Structure Refinement

Once PCA models for all the grouping sets have been built,

we can estimate each grouped point by projecting it to its affil-

iated PCA subspace. Projection of point Xn on the subspace

by • k is:

X̂(k)
n = C(k) +

1or2∑

i=1

α
(k)
i e

(k)
i (1)

where

α
(k)
i = e

(k)
i

T
(Xn − C(k)) (2)

with superscript T denoting the matrix transposition.

For points of an inlier collinear set, we only calculate the

first component of the summary term of Eq.1, i.e. projecting

Xn to the best fitting line of • k. For points of an inlier copla-

nar set, we calculate the first two components of the summary

term of Eq.1, i.e. projecting Xn to the best fitting plane of

• k.

However, for those points with large projection error, this

estimation is not reliable, as they may be outliers in the sense

of multiple view geometry, or be misleadingly classified to

their coplanar sets. We refer to these points as ambiguous

points and use a mixture-PCA model to estimate their coordi-

nates or to reject them as outliers:

X̂n =
∑

k∈κnear

w(k)
n X̂(k)

n (3)
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where κnear ⊆ κ, is the index set of neighboring grouping

sets selected for Xn, w
(k)
n denotes the mixture weight, s.t.∑

k∈κnear

w
(k)
n = 1.

Then the parameter set that determine X̂n is:

Θ = (w
(k)
1 , · · · , w(k)

n , · · · , α(1)
i , · · · , α(k)

i , · · · )
These parameters can be estimated by maximizing the likeli-

hood of Θ given the observed data Xn, without loss of gener-

ality, we take the coplanar situation, where the first two eigen-

vectors are selected, as example:

L(Θ | Xn) = P (Xn | Θ) =
∑

k∈κnear

w(k)
n Pk(Xn | α(k)

1 , α
(k)
2 )

(4)

We refine the mixture weight w
(k)
n and each projection X̂

(k)
n

(actually α
(k)
1 , α

(k)
2 ) of each ambiguous point iteratively, until

convergence (i.e. some w
(k)
n dominates) or over maximum

iteration time. Each iteration is based on an EM algorithm for

maximizing Eq.4. Details of the EM process left out because

of limited space. The detailed deduction is derived from [15],

where the update of wk
n for each iteration is given by:

w(k)
n = P (k | X̂g

n,Θ
g) =

w
(k)
n

g
Pk(X̂

g
n | α(k)

1

g
, α

(k)
2

g
)

∑
i∈κnear

w
(i)
n

g
Pi(X̂

g
n | α(i)

1

g
, α

(i)
2

g
)

(5)

with superscript g denoting the parameter estimated from pre-

vious iteration. We select a Gaussian expression of the prob-

abilistic model:

Pk(X̂n | α(k)
1 , α

(k)
2 ) =

1

(2π)3/2|∑k |1/2

exp{−1

2
[(X̂n − X̂(k)

n )T
∑−1

k
(X̂n − X̂(k)

n )]}
(6)

For the first iteration, the initial value of w
(k)
n can be set

to 1. The iterative refinement algorithm is given in Table. 1

Table 1. Iterative structure refinement algorithm

Step 1. Initialize w
(1)
n , · · · , w(2)

n , · · · = 1

Step 2. For k ∈ κnear, compute Pk(X̂n | α(k)
1 , α

(k)
2 ) by Eq.6

Step 3. Update each w
(k)
n by Eq.5

Step 4. Update X̂n by Eq.3

Step 5. Update α
(k)
i by Eq.2 (replacingXnwithX̂n)

Step 6. If convergent, stop; else, goto Step 2

3. EXPERIMENTAL RESULTS

We have tested our algorithm on a variety of real scene im-

ages. However, space lacks for detailed display of all the im-

ages we have tested, we choose representative open source

images of Merton College (downloaded from VGG website

[11], as shown in Fig.1, to show our experimental results.

Reasons for doing so is that:

First, they are challenging for quasi-dense reconstruction,

because there are repeated texture areas and only 3 views of

the scene are provided (Fig.1 shows the first two views).

Second, other than building blocks with very simple plane

structures, the Merton College has a relatively complicated

structure, which makes it more challenging and suitable for

testing the effectiveness of our algorithm.

Our structure refinement method could also be regarded as

a filtering process, given the initial 3D structure of matched

feature points and the input images. Different quasi-dense

reconstruction methods obtain different initial results, how-

ever, noise is unavoidable for state-of-art methods, and our

refinement can effectively remove some of them. We use two

state-of-art methods to produce initial 3D structure, the first is

PMVS [5], the second is quasi-dense method based on [9, 10].

Camera parameters is calculated by Bundler package [12].

The image segmentation results are shown in Fig.3

(a) first view (b) second view

Fig. 3. image segmentation result.

As PMVS is a multiple view method, we use all the three

images of different views provided by VGG. The point cloud

and texture warped results of PMVS reconstruction is shown

in Fig.4

(a) point cloud (b) texture warped result

Fig. 4. PMVS reconstruction result.

Noise of the reconstruction result is indistinct by looking

at the point cloud, but it is obvious in the texture warped re-

sult if looking at some local regions from selected view, as
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shown in Fig.5 (a), and the structure refined results are shown

in Fig.5 (b) for comparison.

(a) PMVS results (b) after structure refinement

Fig. 5. Comparison of local regions.

For quasi-dense reconstruction method, we use the two

images shown in Fig.1, the reconstruction result is not so good

as those by PMVS, as shown in Fig.6. However, after per-

forming the proposed structure refinement, it still obtains an

obvious improvement. Comparison results are given in Fig.7

(a) point cloud (b) texture warped result

Fig. 6. quasi-dense reconstruction result.

(a) quasi-dense result (b) after structure refinement

Fig. 7. Result Comparison.

4. CONCLUTION

In this paper, we propose a new method for refining the 3D

structure in reconstruction of urban scenes. This method is es-

sentially a statistical inference process combining both multi-

ple view geometry and color image information. Experiments

show that even for state-of-art dense reconstruction results,

our refining process attains an improvement.
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