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Abstract 
 

To reduce the classification errors of online 
handwritten Japanese character recognition, we 
propose a method for confusing characters 
discrimination with little additional costs. After 
building confusing sets by cross validation using a 
baseline quadratic classifier, a logistic regression (LR) 
classifier is trained to discriminate the characters in 
each set. The LR classifier uses subspace features 
selected from existing vectors of the baseline classifier, 
thus has no extra parameters except the weights, 
which consumes a small storage space compared to 
the baseline classifier. In experiments on the TUAT 
HANDS databases with the modified quadratic 
discriminant function (MQDF) as baseline classifier, 
the proposed method has largely reduced the 
confusion caused by non-Kanji characters. 
 
1. Introduction 
 

Character recognition of a large vocabulary, like 
Chinese and Japanese, commonly adopts a hierarchical 
classification scheme for improving both the 
classification speed and accuracy [1, 2, 3]. By the 
widely adopted two-stage scheme, the first stage uses 
a fast coarse classifier for selecting a small subset of 
candidate classes with the hope of containing the 
genuine class of input pattern, and the second stage 
uses a high accuracy classifier for identifying the class 
of  input pattern from the candidate classes [1, 2]. The 
first-stage classifier usually adopts the Euclidean 
distance or linear discriminant function, which are 
computationally simple. 

The second stage of large vocabulary character 
recognition has widely adopted quadratic classifiers, 
especially, the modified quadratic discriminant 
function (MQDF) classifier [4]. Quadratic classifiers 

have the merit that they provide fairly high 
classification accuracy and the parameters of each 
class are estimated independently of the other classes. 
This generative training strategy is fast, but does not 
provide as high accuracy as discriminative classifiers 
because the separability between classes is not 
considered in training. On the other hand, the 
discriminative training of quadratic classifiers is too 
complicated for a problem of thousands of classes. 

To improve the accuracy of quadratic classifiers, 
the compound Mahalanobis function (CMF) was 
proposed [5]. For discriminating a pair of classes (the 
top two ranks output by the baseline classifier), the 
CMF projects the class mean difference onto the 
respective complement subspace of two classes, and 
the distance on this projected feature is combined with 
the baseline quadratic discriminant function for 
discrimination. Compared to the MQDF, the CMF has 
no extra parameters but the online computation of pair 
discriminant functions is expensive. The recently 
proposed LDA (linear discriminant analysis)-based 
compound distance [6] and the critical region analysis-
based pair discrimination [7] further improves the 
accuracy of CMF at the cost of extra parameters 
storage. For achieving high enough accuracy, the 
number of pair discriminators is very large, e.g., over 
70,000 pairs for a 3,755-class character set in [6]. 

A more straightforward strategy for discriminating 
confusing characters is just to re-classify the input 
pattern in a subset of confusing classes with a 
discriminative classifier, such as the neural network in 
[8]. This method re-classifies the input pattern 
whenever the top rank class of baseline classifier falls 
in a confusion set. For high accuracy, the number of 
confusion set discriminators is not small and each 
discriminator is complex. So, the additional cost of 
storage and computation is still considerable. 



In this paper, we propose a new method to 
discriminate confusing characters. First, we form 
confusing class sets by cross validation using a 
baseline MQDF classifier. Each confusing set is 
classified by a logistic regression (LR) classifier [9] 
with subspace features selected from the existing 
vectors of the baseline classifier. Hence, the LR 
classifier has no extra parameters for feature 
extraction, and the storage cost of weights is moderate. 
Compared to the CMF, the proposed method trains 
discriminative confusion set classifiers instead of 
generative classifiers. Compared to the pre-trained 
pair discriminators of [6][7] and the neural networks 
in [8], the proposed method costs only small storage of 
extra parameters. Our experimental results on online 
handwritten Japanese characters show that the 
proposed method largely reduces the recognition 
errors of non-Kanji characters. 
 
2. System Overview 
 

In our experiments, the baseline recognition 
system adopts a two-stage classification strategy [10]. 
After pre-processing and feature extraction of the 
input pattern, the feature dimensionality is reduced by 
Fisher linear discriminant analysis (FDA) [11] 
considering the overall separability of the character 
classes. On the reduced vector, candidate classes are 
selected with a coarse classifier according to the 
Euclidean distance to class means, followed by fine 
classification with the MQDF [4]. Based on the above 
system, the third-stage classification is implemented, 
as illustrated in Fig. 1. A LR classifier with selected 
subspace features is trained for each confusing set. In 
testing, the candidate classes output by the baseline 
classifier are re-classified by the confusing set 
classifier of the top candidate class. 
 

 
Fig. 1. Training (a) and testing (b) of third-stage 

classification.  
 

2.1. Confusing Sets Construction 

For each class ωi, i = 1,…, M, we build a 
confusing set Gi from the training samples by 5-fold 
cross validation, i.e., rotationally using 4/5 for training 
the baseline classifier and the remaining 1/5 for 
validation. Gi is composed of the classes misclassified 
as ωi for at least t times, where t is a threshold to 
control the size of Gi and the risk of misclassification. 
In the confusion matrix 
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where nij denotes the frequency of misclassifying a 
pattern from ground-truthed class ωi as class ωj in 
cross validation. The confusing set of class ωi is 
formed by 

{ | , }  i c ciG n t c i .               (2) 

 Gi defines the set that ωi confuses with. Thus, the 
classes outside Gi rarely confuse with ωi when ωi is 
the top rank class of the baseline classifier. Gi is empty 
(Gi =) if no class is confused with ωi according to the 
above definition. Compared with the approach in [6], 
which selects all the classes with confidences larger or 
closer to that of the genuine one, the proposed method 
selects much fewer confusing classes. 

Denoting Ĝi as {ωi}  Gi, the task of third-stage 
classification is to discriminate the classes of each Ĝi 
when Gi. One strategy is to train pairwise classifiers 
for each Ĝi, i = 1,…, M, and determine the recognition 
result by majority voting or pairwise coupling. 
Another way is to train a multi-class classifier for each 
Ĝi. Considering the fact that different Ĝi share many 
confusing classes, to merge the highly overlapping 
confusing sets can significantly reduce the number of 
discriminative classifiers. 

For two sets Ĝi and Ĝj with Gi   and Gj  , if 
the ratio  
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is greater than a threshold, Ĝi and Ĝj are merged, 
where “||” denotes the cardinality of a set. Since a 
smaller set of classes is easier to discriminate, the 
merging process is relatively conservative. In our 
experiments, a threshold 0.8 is large enough to avoid 
over-merge. The confusion sets are merged iteratively 
until the ratio between each two sets is smaller than 
the threshold. The confusing sets after merging are 



denoted as Si, i = 1,…, M’, where M’ < M, and a 
classifier is trained for each Si for third-stage 
classification. 
 
2.2. Third-Stage Classification 

In testing, the baseline classifier outputs a ranked 
candidate list L with ωi as the top rank. If L  Ĝi = 
{ωi}, ωi is accepted as the recognition result. 
Otherwise, L  Ĝi is re-classified by third-stage 
classifiers to give the final decision. From the 
definition of Ĝi, we know that with ωi as the top rank, 
the classes outside Ĝi rarely confuse with ωi, so, we 
only need to discriminate the classes in L  Ĝi. The 
classes in L  Ĝi are classified by all the classifiers of 
Sj with {Sj | L  Ĝi  Sj, 1  j  M’}, and the final 
decision is determined by majority voting. Because Si, 
i = 1,…, M’ are merged from Ĝi, i = 1,…, M, there 
exists at least one Sj with L  Ĝi  Sj. 
 
3. Third-Stage Classifier Design 
 

In this section, we first formulate the discriminant 
functions of third-stage classifiers which input the 
baseline classifier outputs and multiple subspace 
features, and then describe the subspace selection and 
weight learning methods. For subspace feature 
extraction of each class of Si, i = 1,…, M’, K subspace 
vectors are selected from a common vector set  
derived from the baseline classifier. 

 
3.1. Discriminant Function 

The third-stage classifiers take the outputs of the 
baseline classifier and selected subspace features as 
input. In previous methods of compound distances [5, 
6], the output discriminant function of the baseline 
classifier has been fused with the pair discriminant 
function for fine classification. The CMF method 
extracts 1D subspace from the complement subspace 
of each class, while the LDA-based method learns and 
stores subspace vectors for confusing pairs in advance. 
This yields higher classification accuracy than the 
CMF method but the storage of subspace vectors for a 
large number of confusing pairs is expensive. To 
extract discriminant features for our third-stage 
confusing set classifiers while reducing the storage of 
feature parameters, we select subspace vectors from a 
common vector set derived from the baseline classifier. 

Denoting x as the feature vector after 
dimensionality reduction and j as the mean vector of 
class ωj, the discriminant function of class ωj with ωj 
 Si is formulated as  
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, 1,..., 'j iS i M   , 

where gj(x) is the output of the baseline classifier for 

class ωj , and 
2T( ) ( )ijk j ijkd    x x                      (5) 

is the complementary distance on 1D subspace ijk 
selected from a common vector set, and bij is the bias 
term. By Eq. (4), the baseline classifier outputs and the 
selected complementary distances (subspace features) 
are combined to discriminate one class from the others 
in confusing set Si. 
 
3.2. Subspace Selection 

The subspace vectors ijk in Eq. (5) are selected 
from a common vector set  derived from the baseline 
classifier. Three basic vector sets of MQDF (our 
baseline classifier) can provide discriminant 
information: the axes of the standard coordinate 
system of the feature space, the class means and the 
principal eigenvectors of each class. For selecting 
subspaces of high discriminability, we consider the 
separability between one class and the rest of each Si, i 
=1,…, M’, and select subspaces from the normalized 
class means:  | | , 1,...,    k k k k Mμ μ μ . This 

vector set has a manageable size, and provides good 
complementary discriminability to the baseline 
quadradic classifier. 

According to Eq. (5), to select subspaces is just to 
select the projected features. Since the number of 
candidate features is as large as the class number M, to 
reduce the time cost of feature selection, we adopt the 
variable ranking method [12] which considers 
individual features independently of the others. We 
select a subspace vector set for each class by 
considering the separability between the class and the 
rest in the confusing set. Given a training dataset {(xn, 
cn) | n = 1,…, N} (cn is the class label of xn), for each 
class ωjSi, we rank the subspace vectors  = {ijk | k 
= 1,…,K0} (K0=M) in decreasing order according to 
the Fisher criterion for two classes ωj and Si–{ωj}: 
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01,...,k K , 



where ij
-
 is the mean vector of the training samples 

belonging to Si – {ωj}.  
After ranking, we select the first K (K < K0) 

vectors for each ωjSi. For convenience, we select 
equal number of subspace vectors for each class. To 
further speed up feature selection, we first select a 
reduced set of K1 (K<K1<K0) vectors (200 in our 
experiments) according to the between-class variance 
(numerator of Eq. (6)), and then select K vectors from 
the reduced set according to Eq. (6). The variable 
ranking method based on Fisher criterion has been 
used effectively in a multi-lingual character 
recognition system [13], and is known to be closely 
related to the correlation criterion [12]. 
 
3.3. Weight Learning 

The classifier for confusing set Si as in Eq. (4) is a 
linear classifier. It has K+1 input features for each 
class: the class output of baseline classifier and K 
selected subspace features. To learn the weights, we 
collect training data by 5-fold cross validation, i.e., 
rotationally 4/5 training samples are used to train the 
baseline classifier, and the remaining 1/5 samples are 
used for validation to calculate the baseline classifier 
outputs and the selected subspace features. The Ni 
validation samples from the classes ωjSi are used to 
learn the weights i of the linear classifier for Si . 

We train the linear classifier using the logistic 
regression (LR) method, which minimizes the multi-
class cross-entropy (CE) loss: 
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where tj
n = 1 if j=cn  (class label of the n-th sample) 

and 0 otherwise, and 
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By minimizing the CE loss, the weights of Eq. (4) (aijk 
and bij) are iteratively updated by stochastic gradient 
descent [14]. 

In gradient learning, the weights in Eq. (4) are 
initialized to be zero. For good convergence, the input 
features are divided into two groups: baseline 
classifier outputs and complementary distances, the 
features in each group are rescaled to zero mean and 
standard deviation one with the global mean and 
variance of these features on the samples of the classes 
in each Si.  

Since the input features of confusing set classifier 
is class-specific, the total number of features for each 
sample of class ωj is

{ }
( 1)

i j
iS
S K


  , where 

|Si| denotes the class number of Si. It is hard to store 
the features of all samples for offline training. We 
instead generate the sample features only during 
training. By 5-fold cross validation, five baseline 
classifiers, one for each rotational 4/5 dataset, have 
been trained. And for each confusing set, subspace 
feature selection has been performed. Then in LR 
training, the class-specific features for a sample in a 
1/5 validation set is calculated from its corresponding 
baseline classifier in real time whenever it is used to 
update the weight parameters in an iteration. 
 
4. Experimental Results 
 

We evaluated the performance of the proposed 
method on the TUAT HANDS databases, Kuchibue 
and Nakayosi, of online handwritten Japanese 
characters [15]. To compare with our previous work 
[10], we experimented with 3,345 classes (2,965 JIS 
level-1 Kanji characters and 380 non-Kanji characters) 
as well as 2,965 Kanji classes only, using the samples 
of Nakayosi for training classifiers and the samples of 
Kuchibue for testing. 

From each character pattern, we extract 512D 
feature of local direction histogram, with the trajectory 
normalized by the moment normalization method in 
original direction [10]. The 512D is reduced to 160D 
by LDA. The baseline classifier is the MQDF, with 50 
principal eigenvectors for each class. The parameters 
of MQDF include the class means, which are used to 
select candidate classes in the first stage according to 
Euclidean distance. 

With the baseline recognition system, we observed 
a big gap between the accuracies of 3,345-class 
recognition (90.51%) and Kanji recognition (97.90%), 
because there are many confusing classes among the 
380 non-Kanji characters and between non-Kanji and 
Kanji characters. For third-stage classification, we 
consider only the top five rank classes of the baseline 
classifier with the accumulative accuracy 99.02% for 
3,345-class recognition and 99.75% for Kanji 
recognition.  

For 3,345 classes, the recognition accuracies for 
different threshold t with varying number of subspace 
features are shown in Fig. 2. Table 1 lists the 
recognition accuracies, increased storage and time cost 
(on an Intel Quad Core 2.83GHz CPU 4 GB-RAM PC) 
for different threshold t with K=100 subspace features, 
and Table 2 lists the number of third-stage classifiers 
(M ’) and numbers of confusing classes. 



 

 
Fig. 2. Test accuracies of 3,345-class recognition 

with varying number of subspace features. 
 
Table 1. Test accuracies of all samples, Kanji, non-
Kanji, increased storage, training time and average 
testing time of 3,345-class recognition with K=100. 

For MQDF, storage denotes the dictionary size. 
 

 MQDF t=1 t=2 t=3 t=4 t=5
All (%) 90.51 93.75 93.86 93.80 93.75 93.72

Kanji (%) 96.09 96.43 96.41 96.37 96.34 96.31
Non-Kanji (%) 85.70 91.36 91.58 91.51 91.44 91.41
Storage (MB) 105.11 7.65 3.03 2.03 1.61 1.34
Train time (h) 1.14 81.96 35.52 25.18 20.46 17.22
Test time (ms) 3.75 4.33 4.32 4.12 4.04 4.00

 
Table 2. Classifier number and maximum, average 

class number of Si for 3,345-class recognition. 
 

 t=1 t=2 t=3 t=4 t=5 
#classifier 2493 1275 881 708 615 
Maximum 36 22 17 13 12 
Average 5.15 3.88 3.66 3.54 3.35 

 
Fig. 2 shows that third-stage classification can 

effectively reduce confusion errors. Compared to the 
MQDF (90.51%), even without subspace features 
(K=0), the recognition accuracies are greatly improved 
due to discriminative learning and class set reduction. 
With increasing number of subspace features, the 
classification accuracy further increases. 

From Table 1 and Table 2 we can see that by 
increasing the threshold t to reduce the number of 
confusing classes, the extra storage and time cost are 
reduced, especially the training complexity is greatly 
alleviated, while the recognition accuracies are 
comparable. In contrast to the baseline MQDF, third-
stage classification improves the recognition 
accuracies with only slightly increased storage and 
recognition time. By comparing the recognition 

accuracies for all test samples, Kanji and non-Kanji 
samples of the MQDF, we know that the confusion is 
mainly caused by non-Kanji characters. By third-stage 
classification, the recognition accuracy of Kanji 
characters is improved slightly, while that for non-
Kanji characters is improved prominently. This 
justifies that third-stage classification effectively 
reduces the confusion caused by non-Kanji characters. 

Some samples which are misclassified by MQDF 
while corrected by third-stage classification are shown 
in Fig. 3. We can see that third-stage classification can 
discriminate characters with slight shape difference. 

Note that the patterns of some non-Kanji classes 
such as letters ‘O’, ‘o’ and numeral ‘0’ have identical 
shape after normalization, and it is almost impossible 
to separate them at character level. Nevertheless, the 
proposed third-stage classification method still 
improves the overall recognition accuracy remarkably. 
 

 

 

 

 

 
Fig. 3. Samples misrecognized by MQDF, but 

corrected by third-stage classification with t=2 and 
K=100. 

 
We also performed experiments of recognizing 

2,965 JIS level-1 Kanji characters only. Since the 
Kanji classes have relatively fewer training samples 
compared to the non-Kanji characters [15], to alleviate 
overfitting, we reduce the model complexity by 
sharing weights of the subspace features for each class 
in confusing set Si. With 50 subspace features, the 
recognition results are listed in Table 3. It is shown 
that the accuracies of Kanji recognition is hardly 
improved by third-stage classification compared to the 
baseline MQDF. This is because the Kanji characters 
are less confused on one hand and the number of 
training samples is small for third-stage classification 



on another hand. We conjecture that to separate 
similar Kanji characters, subspace features with more 
discriminability should be incorporated. 
 
Table 3. Test accuracies (%) and increased storage 
(MB) of 2,965-class Kanji recognition with K=50. 

 
 MQDF t=1 t=2 t=3 t=4 t=5

Accuracy  97.90 97.77 97.88 97.92 97.94 97.95
Storage  93.20 2.12 0.70 0.46 0.34 0.28

 
5. Conclusion 
 

In this paper, we propose an error reduction 
method for online handwritten Japanese character 
recognition by discriminating confusing classes using 
multi-class logistic regression (LR) classifiers. With 
the subspace features of LR classifiers selected from 
existing vectors of the baseline MQDF classifier, the 
storage space increases only slightly. The experiments 
on TUAT HANDS databases demonstrate that the 
proposed method can effectively reduce the confusion 
errors caused by non-Kanji characters, and the overall 
accuracy is improved remarkably. It is our future work 
to consider subspace features with more 
discriminability for further higher accuracy. 
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