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Abstract—We present a novel feature, named Spatio-Temporal
Interest Points Chain (STIPC), for activity representation and
recognition. This new feature consists of a set of trackable
spatio-temporal interest points, which correspond to a series of
discontinuous motion among a long-term motion of an object
or its part. By this chain feature, we can not only capture
the discriminative motion information which space-time interest
point-like feature try to pursue, but also build the connection
between them. Specifically, we first extract the point trajectories
from the image sequences, then partition the points on each
trajectory into two kinds of different yet close related points:
discontinuous motion points and continuous motion points. We
extract local space-time features around discontinuous motion
points and use a chain model to represent them. Furthermore, we
introduce a chain descriptor to encode the temporal relationships
between these interdependent local space-time features. The
experimental results on challenging datasets show that our STIPC
features improves local space-time features and achieve state-of-
the-art results.

I. INTRODUCTION

Local space-time interest points features [1]–[3] have been
widely employed for action recognition. They can be used
to form sparse representations of actions and be effectively
integrated into a machine learning framework. Impressive
results have been reported in both synthetic and realistic
scenarios, see [1]–[6]. One possible reason is that they capture
the local discontinuous motion information of actions, which
is extreme discriminative to certain actions. See Fig. 1 for a
graphical illustration of discontinuous motion. When used to
represent complicated activities with long-range motions or
multiple interactive persons, however, the limitation of such
low-level space-time interest points features blows up, since
they describe only the local information of activities in a
spatio-temporal volume, and the representation based on them,
e.g., bag-of-features (BOF), usually discards the geometrical
and temporal relationships among features.

In order to exploit the dynamic property of action/activity,
trajectory-based methods have been employed [7]–[11]. In
trajectory-based methods, trajectory is used as the basic feature
unit. Sun et al. [7] extracted trajectories by matching SIFT
descriptors between consecutive frames, then used an average
SIFT descriptor to describe the appearance information of a
trajectory, and used a trajectory transition descriptor to encode
the motion information on the whole trajectory. Messing et
al. [8] used the velocity history feature of tracked key-points

Fig. 1. Continuous motion (in blue color) and discontinuous motion
(in red color) used for action recognition. Local space-time features, such
as Harris3D [1], focus on the information around the locations having
discontinuous motion. In our work, we use both continuous and discontinuous
motion for activity recognition.

as basic features. One observation of current trajectory-based
features is that the motion/velocity/displacement of points on
a trajectory contains lots of redundancy, since most of the
motion along a trajectory is similar (see the blue point lines
in Fig. 1), thus could be approximated by several motion
states (see the green lines in Fig. 1). Furthermore, the most
discriminative information around discontinuous points (see
the red points in Fig. 1) is not well exploited.

Want et al. [11] suggested to compute rich descriptors, such
as HOG (Histograms of oriented gradients), HOF (Histograms
of oriented optical flow) and MBH (motion boundary his-
togram), within a size-fixed space-time volume around the tra-
jectory. The volume is then subdivided into a spatio-temporal
grid to embed structure information. However, as previous
trajectory descriptors, the space-time volume may contain
too much similar information and the most discriminative
information around discontinuous motion points is suppressed.

In this paper, we propose a new Spatio-Temporal Interest
Points Chain (STIPC) feature. The chain feature aims to
capture not only the space-time information around discon-
tinuous points on a long-term motion process, but also the
continuous motion information between them. These two kinds
of information are encoded by a chain model, which makes it
possible to exploit the temporal relationships between them.
The chain feature is easily extracted: we first extract the point
trajectories from the image sequences, then partition the points



Fig. 2. A graphical illustration of our framework. Trajectories are first
extracted from an image sequence and then are partitioned into two sets of
points: discontinuous motion points and continuous motion points. Trackable
spatio-temporal interest points are detected at discontinuous motion points.
Each set of trackable spatio-temporal interest points is represented by a spatio-
temporal interest points chain (STIPC), which encodes the temporal revolution
of STIPs.

on each trajectory into two kinds of different yet close related
points: discontinuous motion points and continuous motion
points. Local space-time features around discontinuous motion
points, such as HOG and HOF, are then extracted. Finally, a
chain model is used to represent them.

Furthermore, to encode the temporal relationships between
local space-time features, as well as the continuous motion
features, on a chain, we introduce a chain descriptor. This de-
scriptor allows to encode both the short-term relationships and
long-term relationships between features on a chain and gives
a compact histogram descriptor, which makes it convenient to
compute the similarity between chain features.

Different from local space-time features, our chain feature
contains a set of space-time features with temporal association,
which suggests a way to model the relationships between local
space-time features. Our chain feature is also different from
previous trajectory-based features in the following aspects:
it is more discriminative, since discriminative space-time in-
formation is extracted around discontinuous motion points;
redundant motion information is removed by approximating
the continuous motion segments with single motion states.

The rest of this paper is organized as follows. Sec. II gives
a detailed description of our approach for extracting trackable
spatio-temporal interest points. In Sec. III, we present the
chain model for activity representation. We illustrate and inter-
pret the experimental results in Sec. IV, and finally conclude
the paper in Sec. V.

II. EXTRACTION OF TRACKABLE SPATIO-TEMPORAL
INTEREST POINTS

Current local space-time features, such as Harris3D [1] and
Cuboid [2], are not trackable, even though extracted from a
complete motion process of the same objects. One of key
reasons is that the local space-time features, as shown in
Fig. 1, are often extracted at places where motion changes,
thus contain different spatio-temporal motion information.

In this Section, we present a novel method to extract sets
of trackable spatio-temporal interest points (TSTIPs). Each set
of these trackable spatio-temporal interest points are extracted
from a complete motion process of an object or its parts. A
graphical illustration of our framework is shown in Fig. 2.

(a) Trajectory partition by computing extrema of the spatio-
temporal curvature. The red points stand for discontinuous mo-
tion points and blue points stand for continuous motion points.

(b) Spatio-Temporal Interest Points Chain (STIPC). The red
points stand for STIPs in a chain, and the blue points stand
for the continuous motion between STIPs.

Fig. 3. Spatio-Temporal Interest Points Chain (STIPC) is extracted by
partitioning the trajectory.

A. Trajectory Extraction and Partition

Point trajectory could be extracted from an image sequence
by either tracking 2-dimension spatially salient points (such as
corners or SIFT) frame by frame [7], [8] or by tracking optical
flow [11], [12]. In this work, we compute point trajectory using
Sundaram’ GPU-accelerated method [12]. It’s a fast parallel
implementation of large displacement optical flow estimation,
which runs very fast, thus is suitable for our case.

Given the extracted point trajectories, the next step is to
partition each trajectory into two kinds of different points:
discontinuous motion points and continuous motion points.
Suppose that a trajectory with the length of ∆ lies on a curve
τ = (p1, p2, ..., p∆) in the 3-Dimensional spatio-temporal
space, where pi = (xi, yi, ti) is a 3-Dimensional points. It
could be divided by computing the extrema of the spatio-
temporal curvature as in [13]. Specifically, the spatio-temporal
curvature is first smoothed by anisotropic diffusion [14], then
its curvature is computed, finally the extrema of the spatio-
temporal curvature are extracted with non-maxima suppres-
sion. The extrema of the spatio-temporal curvature together
with the start-point and end-point of the trajectory, which
capture both the changes of speed and the changes of the
direction, are noted as discontinuous motion points, and the
rest points are taken as continuous motion points. See Fig. 3(a)
for an illustration.

B. Trackable Spatio-Temporal Interest Points (TSTIPs)

We propose to extract spatio-temporal interest points around
the discontinuous motion points. As said in Sec. II-A, the
discontinuous motion points are the points where the motion
changes discontinuously, e.g., beginning, changing direction,
accelerating, stopping and so on. The information around



discontinuous motion points is reported to be discriminative
for representing an activity, which is also the target that spatio-
temporal interest points-like features pursue.

We name the spatio-temporal interest points on a trajec-
tory as trackable spatio-temporal interest points (TSTIPs).
“Trackable” means that these spatio-temporal interest points
correspond to a series of discontinuous motion among a long-
term motion of an object or its part, thus they have close
interconnection. The interconnection between these spatio-
temporal interest points depicts the dynamic property of an
activity, therefore is an important cue for activity recognition.

HOGHOF [5], which is reported as an excellent descriptor,
is used to describe the TSTIPs. HOG (Histograms of oriented
gradients) exploits the appearance information, whereas HOF
(Histograms of oriented optical flow) characterizes the motion
information. In practice, we use Laptev’s implementation of
HOGHOF [5].

III. SPATIO-TEMPORAL INTEREST POINTS CHAIN
(STIPC) FOR ACTIVITY REPRESENTATION

In this Section, our goal is to model the temporal rela-
tionships among TSTIPs. For this purpose, we propose a
Spatio-Temporal Interest Points Chain (STIPC) model, where
the discontinuous motion, i.e., STIPs, and continuous motion
among STIPs are considered together.

A. Spatio-Temporal Interest Points Chain (STIPC)

A graphical illustration of our Spatio-Temporal Interest
Points Chain (STIPC) model is shown in Fig. 3(b). Our model
exploits the discontinuous motion, i.e., TSTIPs shown with the
red nodes in Fig. 3(b) and the continuous motion, shown with
blue nodes in Fig. 3(b), in one coherent framework. These
two sets of nodes, which stand for two kinds of different,
yet complementary and close related features, compose one
complete chain.

For the STIPs variables in a STIPC, we quantize each STIP
feature into one of finite discretized states in the following
way: a global STIPs codebook is first generated by clustering
all the STIPs features extracted from the training sequences,
where the k-means algorithm is used for clustering and the
size of codebook is empirically set to be 300. Then each STIP
feature is quantized into the corresponding state of the STIPs
codebook. For the continuous motions between STIPs, we also
quantize them into finite discretized states. e.g., for continuous
motion m1 in Fig. 3(a), we first connect the extrema points
S1 and S2, then use the line segment lS1S2 to approximately
represent the continuous motion between S1 and S2, finally
the orientation of line segments lS1S2 are quantized into one
of S = 12 states.

B. Temporal Modeling on STIPC

We introduce a chain descriptor which can flexibly model
the short-term temporal relationships and long-term temporal
relationships among the features in a chain under a first-order
Markov assumption. Our chain descriptor is inspirited from
Ling’s Proximity distribution descriptor [15], in which both

Fig. 4. State transition distribution descriptor. The grid in violet color
stands for state transition between STIPs features, the grid in bordeaux color
stands for state transition between approximated continuous motion features,
while the grid in white color stands for state transition between STIPs and
approximated continuous motion features

of local photometric information and local geometric infor-
mation are combined in a proximity distribution descriptor for
category recognition.

Specifically, we construct a two-dimensional array of one-
dimension n-term state transition distribution, see Fig. 4 for an
illustration. The entry of the two-dimensional array correspond
to bins of STIP codebook and discretized motion states. In
the third dimension, the term measures the scope of temporal
relationships. For example, given a STIPC S1 → m1 → S2 →
m2 → S3 → m3 → S4 (see Fig. 3(b)), for term = 1, the
state transitions of S1 → m1,m1 → S2, S2 → m2,m2 →
S3, S3 → m3,m3 → S4 are considered, for term = 2, the
state transitions of S1 → S2,m1 → m2, S2 → S3,m2 →
m3, S3 → S4 are considered. term = 0 means that the
temporal relations are not considered.

In total, we obtain a chain descriptor Hr with the size of
C × C × N , where C = 300 + 12 stands for the number of
quantized states of features and N = 5 stands for the n-term
state transition we considered.

The similarity between chain descriptor H1
r and H2

r can be
computed in a similar way as in [15]:

s(c1, c2) =

C∑
i,j=1

N∑
r=1

min(H1
r (i, j),H

2
r (i, j) (1)

As suggested in [15], second-order or high-order statistics
could be extended to encode more complicated temporal
dependency of different features. Furthermore, due to the
sparseness of the chain descriptor, computation of the simi-
larity between chain descriptor could be very efficient.

IV. EXPERIMENTAL RESULTS

We evaluate the performance of our chain feature and com-
pare to state-of-the-art methods on the recent UT-Interaction
dataset [16]. It contains 6 classes of human-human interac-
tions: shake-hands, point, hug, push, kick and punch. Each
class contains 20 video sequences which are divided into two
different sets: (1) the first 10 video sequences, Set 1, are taken
on a parking lot with slightly different zoom rate, and the
backgrounds of the video are mostly static with little camera
jitter; (2) the other 10 video sequences, Set 2, are taken on a
lawn in a windy day. The backgrounds of the video are moving



slightly, e.g. tree moves, and the videos contain more camera
jitters. Observe that the background, scale, and illumination of
the videos in each set are different.

In order to evaluate and compare the performances, we
duplicate experimental setting in [16]. Specifically, a 10-fold
leave-one-out cross validation (each times, 9 samples are used
for training and the left one is used for testing) is implemented
on each set. Different methods are compared by using the
average recognition rates.

In our experiments, we first generate a codebook of chain
features using k-means, then represent activity with the bag-
of-features model. We train the model of each class by SVMs
with radial basis function kernel.

We compare our chain feature with two popular local space-
time features, Harris3D feature [1] and cuboid feature [2]. The
results of Harris3D and Cuboid are taken from the ICPR 2010
Contest on Semantic Description of Human Activities [17].
These results are averaged over 10 different codebooks. Fig. 5
shows the comparison results. We can see that our STIPC
feature significantly outperform both of Harris3D and Cuboid,
on both of Set 1 and Set 2. Specifically, on Set 1, the
average classification accuracies of Harris3D and Cuboid
are 64.2% and 75.5% respectively, whereas for the proposed
STIPC feature, we get the average accuracy of 84.7%, which
largely improves the Harris3D feature and Cuboid feature by
20.5% and 9.2% respectively. In set 2, our STIPC feature
outperforms STIPs (59.7%) by 23.1% and Cuboid (62.7%) by
20.1% respectively. Our STIPC feature also outperforms the
state-of-the-art results in [18], with a improvement of average
classification accuracy of 12.9% over [18].

V. CONCLUSION

We have presented a novel Spatio-Temporal Interest Points
Chain feature (STIPC) for activity representation and recog-
nition, which is designed to encode both of the discriminative
discontinuous motion information (described with space-time
descriptors) and continuous motion information among a long-
term motion of an object or its part. STIPC make it possible to
build the connection between local space-time interest points.
We have also presented a method to encode the temporal
relationships between local space-time features. Experiments
on a challenging activity dataset have confirmed that our
proposed STIPC outperforms the popular local space-time
features.
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