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a b s t r a c t

Human action recognition is a challenging task due to significant intra-class variations, occlusion, and

background clutter. Most of the existing work use the action models based on statistic learning

algorithms for classification. To achieve good performance on recognition, a large amount of the labeled

samples are therefore required to train the sophisticated action models. However, collecting

labeled samples is labor-intensive. To tackle this problem, we propose a boosted multi-class semi-

supervised learning algorithm in which the co-EM algorithm is adopted to leverage the information

from unlabeled data. Three key issues are addressed in this paper. Firstly, we formulate the action

recognition in a multi-class semi-supervised learning problem to deal with the insufficient labeled data

and high computational expense. Secondly, boosted co-EM is employed for the semi-supervised model

construction. To overcome the high dimensional feature space, weighted multiple discriminant analysis

(WMDA) is used to project the features into low dimensional subspaces in which the Gaussian mixture

models (GMM) are trained and boosting scheme is used to integrate the subspace models. Thirdly, we

present the upper bound of the training error in multi-class framework, which is able to guide the novel

classifier construction. In theory, the proposed solution is proved to minimize this upper error bound.

Experimental results have shown good performance on public datasets.

Crown Copyright & 2010 Published by Elsevier Ltd. All rights reserved.
1. Introduction

Human action recognition in video is receiving increasing
attention due to its wide applications, such as content-based
video retrieval, human–computer interfaces, video summariza-
tion, visual surveillance, etc. Human action recognition is a
challenging research area because the dynamic human body
motions have almost unlimited underlying representations. There
also exist difficulties in perspective distortions, different
viewpoints and illumination variations. Most of the existing work
[1–3] stem from supervised learning scenario. To achieve good
recognition performance, a large amount of labeled samples are
needed in the training process [4–6]. However, labeled samples
are usually difficult or expensive to obtain due to extensive labor
cost. Therefore, how to achieve a good learning model with
limited labeled samples is a crucial issue.

One way to reduce the amount of required labeled data is to
develop algorithms that are able to learn from a small number of
labeled examples augmented with a large number of unlabeled
examples. Unlabeled examples, which can be easily obtained from
public surveillance cameras, are much less expensive and easier
010 Published by Elsevier Ltd. All

rn Recognition, Institute of
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to obtain than labeled examples. Recently, there has been interest
in semi-supervised learning algorithms that utilize the labeled
data as well as a large amount of unlabeled data to learn the
hypothesis [7]. It shows great advantage by automatically
exploiting huge amount of information from the unlabeled data
and boosts the generalization ability of the trained hypothesis.
To extract specific information from the unlabeled data, a number
of semi-supervised learning methods, such as co-training and
co-EM, are proposed [8–10].

Co-training [8] is a semi-supervised, multi-view algorithm that
uses the initial training set to learn a (weak) classifier in each
view. Then the learned classifiers are used to label all unlabeled
examples, and find out those examples whose labels are most
confident by classifiers. These high-confidence examples are
labeled with the estimated class labels and added to the training
set. Based on the new training set, a new classifier is learnt in each
view, and the whole process is repeated for several iterations. At
the end, a final hypothesis is created by a voting scheme that
combines the prediction of the classifiers learnt in each view. To
use unlabeled data, some works combine boosting and co-training
to construct learning approach [11–13], which are efficient to
exploit the unlabeled data.

Compared with co-training, co-EM algorithm [9,10] can be
thought of as a closer match to the theoretical argument of Blum
and Mitchell [8]. Moreover, co-EM algorithm does not commit to a
label for the unlabeled examples; instead, it uses probabilistic
rights reserved.
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labels that may change from one iteration to the other. By
contrast, co-training’s commitment to the high-confidence
predictions may add to the training set a large number of
mislabeled examples, especially during the first iterations, when
the hypotheses may have little prediction power. In addition,
co-EM converges as quickly as EM does. Despite its popularity and
usefulness, co-EM algorithm suffers from insufficient training
data, especially when the feature space is of high dimensionality.
This restricts the applicability of co-EM to situations where there
are plenty of training data.

For the human action recognition task, there are many
scenarios of multiple labels. Therefore it will be useful to
generalize an algorithm to the multi-class form. Several exten-
sions of adaBoost for multi-class problems have been suggested
[14,15]. In this work we extend the adaBoost.MH [15] algorithm
to co-EM case. By combination of the adaBoost.MH and co-EM, we
propose a novel boosted multi-class semi-supervised learning
algorithm for human action recognition. In our approach, the data
are described as a finite hierarchical Gaussian mixture model
(GMM). To avoid the insufficient training data, especially when
the feature space is of high dimensionality, a weighted multiple
discriminant analysis (WMDA) is adopted to make the required
amount of training data depending only upon the number of
classes, regardless of the feature dimension. Then the co-EM
algorithm is employed to learn the GMM in the WMDA subspace
by probabilistically labeling all unlabeled examples and itera-
tively exchanging those labels between two views (features).
Consequently, a set of weak hypotheses for each view are learnt in
the boosting framework and finally a strong classifier is obtained
for action recognition. For the proposed algorithm, a derived
boosting error bound is served as the theoretical guidance for the
training error.

The proof of our work is similar in spirit to Liu et al. [13]’s
efforts to combine adaboost and co-training for tracking. The key
difference is that we focus on developing a boosted multi-class
semi-supervised learning algorithm for action recognition with
the co-EM algorithm. Most of the existing action classification
algorithms are based on one-against-all strategy, in which each
action category is trained with a classifier. Compared with the
extensively used one-against-all classification strategy, a multi-
class recognition algorithm only needs to train one unified model
which is less computation-intensive.

Compared with the previous methods, our algorithm has the
following advantages:
�
 A boosted multi-class semi-supervised learning algorithm is
proposed for human action recognition, which is efficient to
combine labeled and unlabeled samples to improve the
recognition performance.

�
 A WMDA is adopted to make the co-EM algorithm efficiently

learn parameters regardless of the feature dimension and
avoid re-sampling the training data. In addition, boosting the
GMM in a series of WMDA subspaces enhances the discrimi-
native power of our algorithm.

�
 For this boosted multi-class semi-supervised learning algo-

rithm, a derived upper error bound is served as the theoretical
guidance for classifier construction.

2. Related work

In this section, we mainly focus on existing methods related
to our work. Boosting and co-EM are two key components of our
approach for action recognition. We briefly review the work
related to action recognition and the error analysis for
adaboost.MH and co-EM.
2.1. Action recognition

To represent human actions, some significant efforts have been
made in spatio-temporal volumes [16,17], spatio-temporal inter-
est points [18,19,1,5] or trajectory [20,21]. Recently, some
approaches use the combination of appearance and motion
features [22,5,2]. Laptev et al.’s spatio-temporal interest points
[1] have shown good performance for action recognition and are
adopted in this paper. Histograms of oriented gradient (HoG)
and optical flow (HoF) are considered as two ‘‘views’’, in the
co-EM algorithm. To recognize human action, a lot of works use
labeled samples to train action models [21,23]. Alternatively,
some researchers work on directly learning from unlabeled
action dataset in a unsupervised manner [24–26]. However,
there are very few semi-supervised learning methods for
human action analysis, which can fully use both the labeled
and unlabeled data. Guan et al. [27] propose an En-co-training
method to make use of the unlabeled action videos. It shows
that the learning performance can be improved by utilizing
the unlabeled data, but the comparative experimental results
with the state of the art methods on publicly dataset are
not reported.
2.2. Hamming loss of adaBoost.MH

In [15], Schapire and Singer show that the following bound
holds for the Hamming loss of H on the training data:

hlossðHÞ ¼
1

nL

X
i,l

1signðHðxi,lÞÞaYi½l�Ur
YT

t ¼ 1

Zt , ð1Þ

where xi is the ith training sample and Yi[l] is the corresponding
class label. For any predicate �, let 1 � U be 1 if � holds and
0 otherwise. n is the number of the training samples and Zt

is a normalization factor which is the weight sum of all the
samples after the tth weak hypothesis training. Through mini-
mizing Zt in each weak hypothesis learning, adaBoost.MH
decreases the whole error upper bound of itself. The Zt can be
expressed by

Zt ¼
X

i,l

Dtði,lÞexpð�atYi½l�htðxi,lÞÞ, ð2Þ

where Dt(i,l) is the normalized weight of the ith sample in the tth
weak hypothesis training.
2.3. Upper error bound of co-EM

Dasgupta et al. [28] give PAC bounds on the error of co-training
in terms of the disagreement rate of hypotheses on unlabeled
data in two independent views. This justifies the direct
minimization of the disagreement. Our analysis is mainly based
on the work in [29]. It proves that PAC-style guarantees that
if two independent hypotheses hj(x) in views j¼1, 2 have a
probability at least 50% of assigning x to the correct label,
then with high probability the misclassification rate is upper
bounded by the rate of disagreement between the classifiers
based on each view. The above error bound can be approximately
expressed as follows:

Pðh1ðxÞah2ðxÞÞZmax
j

PðhjðxÞayÞ, ð3Þ

where y is the real label, jAf1,2g is the index of the view and hj(x)
is the classifier based on the jth view. In unsupervised learning,
the risk of assigning instances to wrong labels cannot be
minimized directly, but this argument shows that we can
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minimize an upper bound on this risk by minimizing the
disagreement of multiple hypotheses.
3. Boosted multi-class semi-supervised learning algorithm

Based on the adaBoost.MH and co-EM, we propose a novel
boosted multi-class semi-supervised learning algorithm. The pro-
posed algorithm trains two classifiers in different views combining
labeled and unlabeled samples using the co-EM algorithm.

In the multi-label case, each instance xAX may belong to
multiple labels in Y, where Y is a finite set of labels, and let L¼ jYj.
Thus, a labeled example is a pair (x, Y) where YDY is the set of
labels assigned to x. The single-label case is clearly a special case
in which jY j ¼ 1 for all observations.

For YDY, define Y[l] for lAY to be

Y ½l� ¼
þ1 if lAY ,

�1 if l=2Y :

(

The classifier of adaBoost.MH is an ensemble of several weak
hypotheses:

Hðx,lÞ ¼
XT

t ¼ 1

athtðx,lÞ, ð4Þ

where H(x,l) is the ensemble strong hypothesis and its classifica-
tion result is sign(H(x,l)), ht(x,l) is the tth weak hypothesis to be
learned and at is the corresponding voting weight.

To treat unlabeled data in the updated process, two views are
adopted to describe each sample in the co-EM framework.
Classifiers based on each view are trained iteratively, and then
naturally combined together to give a final hypothesis. Such
multi-view ensemble classifier can be represented as

Fðx,lÞ ¼
X

j

Hjðx,lÞ, ð5Þ

where Hj(x,l) is the strong classifier based on the jth view defined
in Eq. (4). In Sections 3.1 and 3.2, we will describe the detail of the
boosted multi-class semi-supervised learning algorithm, follow-
ing the key issues introduced in [15].

3.1. Designing weak hypothesis ht

Hierarchical mixture models provide flexible discrimination
tools, where each conditional distribution f jðxjy¼ lÞ in view j is
modelled by a mixture of components [30]. At the high level, the
distribution is described by

f jðxjfj
Þ ¼

XK

k ¼ 1

wj
kf j

kðx; ykÞ,

where K is the number of components, wk the mixing proportions,
yk the conditional distribution parameters, and fj denotes all
parameters fwj

k; ykg
K
k ¼ 1. The high-level description can also be

represented as a low-level mixture of components, as shown here
for multi-class classification:

f jðxjfj
Þ ¼

XL

l ¼ 1

XKl

kl ¼ 1

wj
kl

f j
kl
ðx; ykl

Þ: ð6Þ

In our hierarchical mixtures, the class label y provides a subset
of possible components. When y ¼ l the modes from kl¼1 to Kl

are possible, and when an example is unlabeled, all modes are
possible. In this setting, the co-EM algorithm can be used to
maximize the log-likelihood with respect to fj to obtain the
parameters with the unlabeled data.
Once the parameters are learnt, the probability of a sample x

belonging to each class l can be obtained as

pj
lðljxÞ ¼

XKl

kl ¼ 1

wj
kl

f j
kl
ðx; ykl

Þ: ð7Þ

Based on these probabilities, we can design weak hypothesis as
follows:

hjðx,lÞ ¼
þ1 if pj

l Zthj
l ,

�1 otherwise,

(
ð8Þ

where pj
l ¼ pj

lðljxÞ=
PL

l ¼ 1 pj
lðljxÞ, thj

l is a threshold determined by
minimizing the weighted classification error.

The Gaussian mixture model (GMM) can approximate arbi-
trary probability distributions, which makes it a powerful tool for
feature representation and classification. However, it suffers from
insufficient training data using EM or co-EM to learn its
parameters, especially when the feature space is of high
dimensionality. To tackle this problem, Tang and Huang [31]
proposed a method to boost the GMMs via discriminant analysis.
At each iteration t, a multiple discriminant analysis (MDA)
subspace is created by projection of the re-sampled
training examples according to a distribution Dt(i), which is
adaptively adjusted to assign more weights to those examples
misclassified by the GMM classifier in the previous iteration.
However, the re-sampling process does not make use of sample
weights and leads inefficient use of the training data. To overcome
this problem, we train GMM in a weighted multiple discriminant
analysis (WMDA) subspace using co-EM algorithm. The data are
projected from the high dimensional space to a (L�1)-dimen-
sional subspace, in which the required amount of training data
depends only upon the number of classes, regardless of the
feature dimension. The weighted mean and scatter matrices are
defined as

ml ¼

Pnl

i DtðiÞxiPnl

i DtðiÞ
, SW ¼

XL

l ¼ 1

Pnl

i DtðiÞðxi�mlÞðxi�mlÞ
TPnl

i DtðiÞ
,

m¼

Pn
i DtðiÞxiPn

i DtðiÞ
, SB ¼

XL

l ¼ 1

Xnl

i

DtðiÞðml�mÞðml�mÞTPnl

i DtðiÞ
, ð9Þ

where

DtðiÞ ¼
XL

l ¼ 1

Dtði,lÞ, ð10Þ

nl is the number of samples in class l, n is the number of all
samples, and Dt(i,l) are the weights provided by boosting at step t.

Using WMDA can eliminate the need of re-sampling the training
data. This in turn leads to a more efficient use of the training data.
The GMM formulated in the WMDA subspace requires significantly
less training data than that in the original high-dimensional space.
Although important discriminatory information may be lost during
dimensionality reduction, we believe that the loss of discriminative
power due to dimensionality reduction can be effectively compen-
sated through iteratively boosting the GMM in a series of different
WMDA subspaces. By way of boosting the different GMM, the
samples are classified into different low-dimensional subspaces.
Finally, boosting scheme is adopted to integrate the different
subspaces models, and experimental results validate the effective-
ness of our proposed method.

3.2. Choosing at

In semi-supervised learning, if the labels of all samples are
given as in Eq. (11), in order to minimize training error, a
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reasonable approach might be to greedily minimize Zt on
each round of boosting for multiple views. In this work,
our research is restricted to two views, j¼1, 2. This will be
proved in Section 4. We can apply this idea in the choice of at

in Eq. (4):

ui½l� ¼
Yi½l�, i¼ 1, . . . , m,

signðh3�j
t ðxi, lÞÞ, i¼mþ1,: . . . , n

(
ð11Þ

For fixed t, let Wt, +
j , Wt,�

j be defined by

Wj
t,þ ¼

X
i,l:hj

tðxi ,lÞ ¼ ui ½l�

Dj
tði,lÞ,

Wj
t,� ¼

X
i,l:hj

t ðxi ,lÞaui ½l�

Dj
tði,lÞ: ð12Þ

We can calculate Zt
j as

Zj
t ¼
X

i,l

Dj
tði,lÞexpð�ui½l�aj

th
j
tðxi,lÞÞ

¼Wj
t,þ e�aþWj

t,�ea: ð13Þ

It can be easily verified that Zt
j is minimized when

aj
t ¼

1

2
ln

Wj
t,þ

Wj
t,�

 !
: ð14Þ

For this setting of aj
t , we have

Zj
t ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Wj

t,þWj
t,�

q
:

The weight updates of the samples are obtained as follows:

Dj
tþ1ði,lÞ ¼

Dj
tði,lÞ � expð�Yi½l�aj

th
j
tðxi,lÞÞ

Zt
, i¼ 1, . . . ,m,

Dj
tþ1ði,lÞ ¼

Dj
tði,lÞ � expð�signðh3�j

t ðxi,lÞÞaj
th

j
tðxi,lÞÞ

Zt
, i¼mþ1, . . . ,,n:

ð15Þ

The final strong hypothesis described in Eq. (5) is obtained by
linear combination of all the weak hypotheses in each view,
i.e. Fðx,lÞ ¼

P2
j ¼ 1

P
ta

j
th

j
tðx,lÞ.

A more detailed description of the proposed boosted multi-
class semi-supervised learning algorithm is given in Algorithm 1.
In each iteration, a WMDA subspace is created by projection of
the labeled training examples according to a distribution
Dt(i) as shown in Eq. (10). Based on the WMDA subspace, GMM
is learned by using co-EM algorithm combining labeled and
unlabeled samples. The co-EM algorithm probabilistically labels
all unlabeled examples and iteratively exchanges those
labels between two views. This process iterates until the
classifiers converge, and the number of iterations is about 25.
Once the pj

lðljxÞ is learnt, the weak hypothesi ht,0
j for each

view is initialized just using the labeled data. The unlabeled
data can be set with pseudo-labels and the hypothesis is
obtained with the lowest training error as shown in Eq. (8), and
this process is repeated for K times. The weak hypothesis
with the lowest error is selected, and the voting weight is
calculated. Then the sample weights are updated. After
T iterations, a final strong hypothesis can be learned. In Algorithm
1, ht,k

j (x,l) is the weak hypothesis selected in the kth iteration
for the jth view. ui is the label of the ith sample. For the
labeled sample, ui is the real label. For the unlabeled sample,
ui is the pseudo-label labeled by weak hypothesis in different
view.

Algorithm 1. The proposed boosted multi-class semi-supervised
learning algorithm
1:
 Input: labeled examples Xl ¼ f/xi,YiSji¼ 1, . . . ,mg and

unlabeled examples Xu ¼ f/xi,�Sji¼mþ1, . . . ,ng,
X ¼ Xl [ Xu.
Initialize: 8i,j : Dj
1ði,lÞ ¼

1
nL, j¼1, 2; l ¼ 1, y, L
2:
 for t¼ 1,y,T : do

3:
 Project Xl to WMDA subspace according to the

distribution Dt(i) shown in Eq. (10).

4:
 Train GMM in the WMDA subspace for xAX using

co-EM algorithm to obtain pj
lðljxÞ in each view.
5:
 initialize 8j : hj
t,0 using only labeled data Xl in the

WMDA subspace according to the Eq. (8).

6:
 for k¼ 1, . . . ,K and j¼1,2 do

7:
 Set pseudo-labels:
ui½l� ¼
Yi½l� i¼ 1, . . . ,m

signðh3�j
t,k�1ðxi,lÞÞ i¼mþ1, . . . ,n

(

8:
 Choose hypothesis ht,k-1
j with the lowest error as in

Eq. (8) and get
Wj
t,�,k,l ¼

P
i:hj

t,k
ðxi ,lÞaui ½l�

Dj
tði,lÞ
9:
 end for

10:
 Output selected hypothesis ht

j(x,l):
hj
tðx,lÞ ¼ hj

t,k0
ðx,lÞ, where k0 ¼ arg min

kA f1,...,Kg
Wj

t,�,k,l.
11:
 Calculate voting weight with Eq. (12):
aj
t ¼

1

2
ln

Wj
t,þ

Wj
t,�

 !
12:
 Update sample weights for 8i,j:
Dj
tþ1ði,lÞ ¼

Dj
tði,lÞexpð�aj

tui½l�h
j
tðxi,lÞÞ

Zj
t

where Zj
t ¼
P
i,l

Dj
tði,lÞexpð�aj

tui½l�h
j
tðxi,lÞÞ
13
 end for

14:
 Output: the final strong hypothesis
Fðx,lÞ ¼
P2

j ¼ 1

PT
t ¼ 1

aj
th

j
tðx,lÞ
4. Error analysis of the proposed algorithm

In this section, we discuss the hamming loss of our boosted multi-
class semi-supervised algorithm and give a simple justification in
theory.

For the jth view, where jAf1,2g, we have the following
normalized weight of the ith sample:

Dj
Tþ1ði,lÞ ¼

expð�Yi½l�H
jðxi,lÞÞ

nL
QT

t ¼ 1 Zj
t

, ð16Þ

where Dj
1ði,lÞ ¼ 1=nL. If signðFðxi,lÞÞaYi½l� then Yi½l�Fðxi,lÞr0 im-

plying that expð�Yi½l�Fðxi,lÞÞZ1 and ½expð�Yi½l�Fðxi,lÞÞ�
1=J

Z1. Thus,

1signðFðxi,lÞÞaYi½l�Ur ½expð�Yi½l�Fðxi,lÞÞ�
1=J

¼ exp �Yi½l�
XJ

j ¼ 1

Hjðx,lÞ

0
@

1
A

2
4

3
5

1=J

¼
YJ

j ¼ 1

½expð�Yi½l�H
jðxi,lÞÞ�

1=J

r
1

J

XJ

j ¼ 1

expð�Yi½l�H
jðxi,lÞÞ: ð17Þ
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Combining Eqs. (16) and (17), the following bound holds on the
training error of F(x,l) in supervised leaning:

hlossðFÞ ¼
1

nL

X
i,l

1signðFðxi,lÞÞaYi½l�U

r
1

nL

X
i,l

1

J

XJ

j ¼ 1

expð�Yi½l�H
jðxi,lÞÞ

2
4

3
5

¼
1

nL

X
i,l

1

J

XJ

j ¼ 1

nL
YT

t ¼ 1

Zj
t

 !
Dj

Tþ1ði,lÞ

8<
:

9=
;

¼
1

J

XJ

j ¼ 1

YT

t ¼ 1

Zj
t

 !X
i,l

Dj
Tþ1ði,lÞ� ¼

1

J

XJ

j ¼ 1

YT

t ¼ 1

Zj
t

 !
:

2
4 ð18Þ

In semi-supervised learning, the error bound of F(x,l) is derived as
follows.

Theorem 1. Assuming the upper error bound of co-EM comes true in

Eq. (3), the following bound holds on the training error of F(x,l) in

semi-supervised leaning:

hlossðFÞ ¼
1

nL

X
i,l

1signðFðxi,lÞÞaYi½l�U

r
1

2nL

Xm

i ¼ 1

XL

l ¼ 1

expð�Yi½l�H
1ðxi,lÞÞ

(

þ
Xm
i ¼ 1

XL

l ¼ 1

expð�Yi½l�H
2ðxi,lÞÞ

þ
Xn

i ¼ mþ1

XL

l ¼ 1

expð�signðh2
t ðxi,lÞÞ

XT

t ¼ 1

a1
t h1

t ðxi,lÞÞ

þ
Xn

i ¼ mþ1

XL

l ¼ 1

expð�signðh1
t ðxi,lÞÞ

XT

t ¼ 1

a2
t h2

t ðxi,lÞÞ

)
:

The proof of this Theorem 1 appears in Appendix A. The

important consequence of Theorem 1 is that, in semi-supervised
learning, if the labels of all samples are given as in Eq. (11), in
order to minimize training error, a reasonable approach might be
to greedily minimize the bound given in Eq. (18) by minimizing Zt

1

and Zt
2 on each round of boosting. We apply this idea both in the

choice of at and as a general criterion for the choice of weak
hypothesis ht introduced in Section 3.
Table 1
The comparison of different methods about average precision (AP) for each action

class on the HOHA dataset.

Action Method

1 (%) 2 (%) 3 (%)

AnswerPhone 33.68 38.14 31.91

GetOutCar 38.88 32.95 31.50

HandShake 33.50 27.27 17.42

HugPerson 36.75 35.56 26.46

Kiss 54.75 45.35 40.56

SitDown 29.81 21.50 25.30

SitUp 11.63 10.37 9.45

StandUp 50.88 51.93 45.65
5. Experimental results

In this section, we systematically evaluate the effectiveness of
our proposed boosted multi-class semi-supervised learning algo-
rithm on public action recognition datasets, i.e. the HOHA
database of movie videos used in [1] and the KTH actions
dataset [19].

5.1. Experimental settings

The HOHA database contains two video training sets, a manual
and an automatic one, and a video test set. It contains video clips
for eight classes of movie actions. In our work, the manual
training set and the test set are used, and they contain 430 videos
with clean label. This database is collected from realistic movie
and is very complicated. The KTH database contains 600
low-resolution (160 �120) video files, and each file contains
four sequences. There are about 2391 sequences of 25 people,
each performing six natural actions: ‘boxing’, ‘handclapping’,
‘handwaving’, ‘jogging’, ‘running’ and ‘walking’. Each action is
performed under four different conditions: outdoors, outdoors
with scale variations, outdoors with different clothes and indoors.
Each video contains one person repeatedly performing one action
for four times. The challenges in this database include scale
changes, action frequency changes and illumination variations.

We use Laptev’s spatio-temporal interest point features to
describe video [1]. The currently implemented types of descrip-
tors are HOG (histograms of oriented gradients) and HOF
(histograms of optical flow) computed on a 3D video patch in
the neighborhood of each detected STIP. The patch is partitioned
into a grid with 3�3�2 spatio-temporal blocks; 4-bin HOG
descriptors and 5-bin HOF descriptors are then computed for all
blocks and are concatenated into a 72-element and 90-element
descriptors, respectively. The details can be found in [1]. In our
work, these HOG and HOF features are considered as the View1

and View2, respectively. Due to the limitations of the distributed
implementation of Laptev’s spatio-temporal interest point fea-
tures, we do not adopt the best performing channel combination.
On the KTH dataset, we use k-means to get a visual vocabulary,
the number of clusters is empirically set to 1000. On the HOHA
dataset, the number of clusters is set to 4000.

HOHA and KTH datasets contain single-action per video
sequence, and most of the previously published results assign a
single label to each sequence (per video sequence classification).
As a result, we also report per video sequence classification on
these two datasets. Note that the testing and training samples on
KTH dataset are video sequences obtained according to the
sequence boundaries given by ‘www.nada.kth.se/cvap/actions/
00sequences.txt’.
5.2. Comparison on HOHA dataset

On the HOHA database, we randomly choose 1
2 of the whole

dataset as training samples T. We again randomly select 1
4 as

additional training samples A. The remaining 1
4 data are left for

testing. The results are shown in Table 1. In method 1, we
combine T and A as the enlarged training set. We ignore the label
information of A and combine the unlabeled A with T to form the
training set in method 2. Different from the first two experiment
settings, we only make use of T in method 3. The average accuracy
are 36.23%, 32.88%, 28.53% respectively. From Table 1, the
accuracy of method 1 is lower than method 2 for AnswerPhone,
and StandUp. The reason is some unlabeled samples from other
classes are very similar to the training data of the two classes, and
it leads to the false classification in test dataset. To fairly compare
with [1], we follow the same experiment setting and use the same
features: HoG-BoF and HoF-BoF as two views. Our average

www.nada.kth.se/cvap/actions/00sequences.txt
www.nada.kth.se/cvap/actions/00sequences.txt
www.nada.kth.se/cvap/actions/00sequences.txt
www.nada.kth.se/cvap/actions/00sequences.txt
www.nada.kth.se/cvap/actions/00sequences.txt
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accuracy is 30.51% on both views which is better than 27.00%
using HoG-BoF and 21.49% using HoF-BoF, respectively. In a single
view, the average accuracy is 29.83% and 26.79% using HoG-BoF
and HoF-BoF respectively. This result does not exceed the 38.39%
which is reported by using the best channel combination. It shows
that the feature is also important in action recognition. How to
describe action efficiently is another problem beyond the discus-
sion scope of this paper. For our method, we can draw the
conclusion that it is useful to exploit unlabeled samples to
improve performance.

In addition, we randomly select 3
8 of the whole dataset as

training samples T and choose 1
8 as additional training samples A.

The remaining 4
8 samples are used for testing. We do three

experiments that are similar to the above three methods, and the
average accuracies are 27.16%, 25.62%, 22.83% respectively. From
these results, we can come to the conclusion that our method is
effective to adopt unlabeled samples to improve performance and
alleviate the human labors to manually label training samples.
5.3. Comparison on KTH dataset

In order to evaluate our proposed algorithm, we perform
experiments with three different configuration on the KTH dataset.
For the first method, we adopt the leave-one-out cross validation
scheme and use supervised learning. Details are as follows.
Twenty-four out of the 25 actors in the database are used to train
the classifier, the 25th is used for the evaluation. This is repeated
for all 25 actors and the rates are averaged. The confusion matrix is
given in Fig. 1(a). The average accuracy is about 94.5%. For the
second method, we use 15 out of the 25 actors as labeled samples,
nine actors as unlabeled samples, and the 25th is used for testing.
For each actor, there are about 96 video sequences. This is repeated
for all 25 actors and the rates are averaged. The confusion matrix
for this method is given in Fig. 1(b). The average accuracy is 92.0%.
The third method is mostly the same as the second. The only
difference is that we do not use the unlabeled data. The accuracy is
88.1%. As the dataset is small, the number of Gaussian is set to 3 for
each class l in our experiments.

Table 2 compares the average class accuracy of our first method
with results reported by other researchers. Compared with the
existing approaches, our method shows much better performance
in supervised learning, outperforming the state-of-the-art
approaches. Even in semi-supervised learning where only small
labeled samples are used, our second method achieves a good
1.0 .00 .00 .00 .00 .00

.00 1.0 .00 .00 .00 .00

.00 .02 .98 .00 .00 .00

.00 .00 .00 .87 .11 .02
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jogging
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ha

Fig. 1. Confusion matrices on the KTH dataset. (a) Results using supervised
performance. Moreover, the result of our second method is better
than our third method, which shows that our semi-supervised
learning can make use of unlabeled samples to improve the perfor-
mance. Note that a precise comparison between the approaches is
difficult, since experimental setups, e.g. different strategy in
training, slightly differ with each approach.

In addition, we realize the first method on the KTH dataset
with one-against-all classification strategy and our multi-class
recognition algorithm to compare the computation time. For our
multi-class recognition algorithm, it costs about 9.6 min. For the
one-against-all classification strategy, the computation time is
about 21.5 min. The results validate our method is less computa-
tion-intensive than the one-against-all classification strategy.
The maximum numbers of iterations in the boosting process
and in the co-EM process are manually set to 80 and 35, respec-
tively. All the experiments are run on a sever with Intel(R)
Pentium(R) Dual CPU with 2.2 GHz CPU and 2 GB memory and the
code is run in MATLAB platform.

However, only using small unlabeled samples cannot evaluate
the performance of our algorithm efficiently, hence we attempt to
use more unlabeled samples to test the proposed method. On KTH
dataset, each video contains one person repeatedly performing
one action, therefore we divide each video into multiple short
sequences with 1

2 overlap. In this way, we obtain about 6295 short
videos. We prevent the same subject from doing the same action
to be in both training and testing portions. In these videos, 960
videos are used for testing, and the remaining are used as labeled
and unlabeled data. We evaluate our proposed algorithm on
various size of labeled and unlabeled data. As Fig. 2(a) and (b)
shows, different size of labeled and unlabeled data are chosen,
respectively. The performance is obviously improved when 2500
unlabeled data are adopted compared with that of without
unlabeled data. It can be seen that with more unlabeled data for
training, the system gets better performance. It also shows that
unlabeled data help to improve the performance of the system.

We also do experiments to compare our proposed method
with boosted co-training method for multi-class classification.
This method is different from Algorithm 1 at the 4th step. The
classifiers in two views are initialized using EM algorithm with
labeled samples for each class l. At every round of co-training
each classifier labels and chooses unlabeled samples per class
to be added to the labeled samples. The comparison results are
shown in Fig. 3. As can be seen, our proposed method outperforms
the boosted co-training algorithm, especially at the previous
iterations.
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.01 .99 .00 .00 .00 .00

.01 .03 .96 .00 .00 .00

.00 .00 .00 .83 .16 .01

.00 .00 .00 .18 .81 .01

.00 .00 .00 .03 .00 .97

boxing

ndclapping

handwaving

jogging

running

walking

boxing
handclapping

handwaving

jogging
running

walking

learning strategy. (b) Results using semi-supervised learning strategy.



Table 2
The comparison of different methods on the KTH dataset.

Method Schuldt et al. [19] Niebles et al. [24] Laptev et al. [1] Liu et al. [2] Ours

Accuracy (%) 71.7 83.3 91.8 93.8 94.5
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Fig. 2. Evaluation the performance of the proposed method with different number of unlabeled data and labeled data. (a) Comparison of accuracy on various number of

labeled data. (b) Comparison of accuracy on various number of unlabeled data.
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Fig. 3. Comparison between boosted co-EM and boosted co-training on KTH

dataset.
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6. Conclusions

We have proposed a boosted multi-class semi-supervised
learning algorithm for human action recognition by combining
adaboost.MH and co-EM. Through the co-EM algorithm, labeled
data and unlabeled data are adopted to train classifiers in two
views. To avoid suffering from insufficient training data, espe-
cially when the dimension of the feature space is high, a WMDA is
employed to make use of training data and learn the parameters
of GMM by co-EM efficiently. In addition, we give a theoretical
analysis of the training error of our algorithm. We have tested our
proposed method on public human action databases, the results
are encouraging. We believe that the proposed boosted multi-
class semi-supervised learning algorithm can be also helpful for
other applications where manual labels are costly. To improve the
performance of action recognition, we will explore more effective
representations for action information in the future.
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Appendix A

This appendix gives a simple proof of Theorem 1.

Proof. In semi-supervised learning, fxiji¼ 1, . . . ,mg are the labeled
samples and fxiji¼mþ1, . . . ,ng are the unlabeled samples.
The hamming loss of Theorem 1 can be represented as follows by
Eq. (18):

hlossðFÞ ¼
1

nL

X
i,l

1signðFðxi,lÞÞaYi½l�U

r
1

2nL

Xm

i ¼ 1

XL
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expð�Yi½l�H
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XL
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Xn
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XL
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expð�Yi½l�H
2ðxi,lÞÞ

)
:

ð19Þ

In Eq. (19), the first and second terms have upper error bounds as
shown in Eq. (18), however, fYi½l�ji¼mþ1, . . . ,ng is unknown in the
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third and fourth terms. Combining Eqs. (2) and (16), the third term on
the right side of Eq. (19) can be transformed as follows:
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where W1
t,þ ¼

P
i,l:Yi ½l� ¼ h1
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PL
l ¼ 1ðD

1
Tþ1ði,lÞÞ. In Eq. (20) , only Wt,�

1 is related to
Yi[l]. Wt,�

1 is the weighted error rate for the tth weak hypothesis
training, i.e. W1

t,� ¼ Pðh1
t ðxi,lÞaYi½l�Þ. If the upper error bound of

co-EM comes true in Eq. (3), Pðh1
t ðxi,lÞaYi½l�Þ is upper bounded by

Pðh1
t ðxi,lÞah2

t ðxi,lÞÞ. Since Eq. (20) is an increasing function of Wt,�
1 ,

we can use Pðh1
t ðxi,lÞah2

t ðxi,lÞÞ to replace Pðh1
t ðxi,lÞaYi½l�Þ to get the

upper bound of Eq. (20). This replacement is equivalent to replace Yi[l]
with sign(ht

2 (xi,l)). Through similar transformation, the upper bound
of the fourth term on the right side of Eq. (20) can be also obtained.
They are represented as follows:
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Combining Eqs. (19) and (21), Theorem 1 is proved. Therefore, to
minimize the training error in semi-supervised learning, we can set
the labels of all samples as in Eq. (11) and minimize Zt

1 and Zt
2 on each

round of boosting. We use this idea both in the choice of at and as a
general criterion for the choice of weak hypothesis ht presented in
Section 3. Proof is completed. &
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