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Abstract. This paper presents a system of data decomposition and spa-
tial mixture modeling for part based models. Recently, many enhanced
part based models (with e.g., multiple features, more components or
parts) have been proposed. Nevertheless, those enhanced models bring
high computation cost together with the risk of over-fitting. To tackle
this problem, we propose a data decomposition method for part based
models which not only accelerates training and testing process but also
improves the performance on average. Besides, the original part based
model uses a strict rigid structural model to describe the distribution of
each part location. It is not “deformable” enough, especially for those
instances with different viewpoints or poses in the same aspect ratio.
To address this problem, we present a novel spatial mixture modeling
method. The spatial mixture embedded model is then integrated into
the proposed data decomposition framework. We evaluate our system on
the challenging PASCAL VOC2007 and PASCAL VOC2010 datasets,
demonstrating the state-of-the-art performance compared with other re-
lated methods in terms of accuracy and efficiency.

1 Introduction

Part based models have been a successful method for representing object cate-
gories [1–6]. It was firstly proposed by Fischler and Elschlager [7] in 1973. Later
in [8] Marr and Nishihara introduced articulated limb model. In the past sev-
eral years, Felzenszwalb et al ’s work [1, 9] significantly advances the original
pictorial structure model [7]. Part based models have been widely used in sev-
eral important computer vision problems such as object detection [1–4, 6, 10, 11],
pose estimation [5], action recognition [12] and scene understanding [13].

Part based models consider that an object can be modeled as a collection of
local part templates, together with structural constraints. In the past decade,
constellation model proposed by Fergus et al [11] and pictorial structure model
presented by Felzenszwalb et al [1, 9] obtained great success. The latter de-
formable part based model (DPBM) [1] stands out for its outstanding perfor-
mance on VOC challenges [14]. The use of moving parts can well adapt the learnt
model to target image structure. For detection task, this kind of configuration
has good property of robustness to deformation and partial occlusion which
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Fig. 1: Examples of different viewpoint but the same aspect ratio. The layout of struc-
tural constraints should be different.

provides superior performance than rigid template model [15]. However, to our
understanding, part based models have two basic limits: 1) the computational
complexity is high. 2) The original DPBM is not “deformable” enough.

Recently, there surge many enhanced models through multiple features [3]
such as combining Histogram of Oriented Gradients (HOG) and Local Binary
Patterns (LBP), more components and parts [5, 16]. These methods obtained
very promising results on either detection task or pose estimation. Neverthe-
less, these models suffer from large computational complexity. Besides, when
the length of models becomes longer, they face a higher risk of over-fitting.

The original DPBM [1] uses one unique reference anchor point for each part.
This results in that the layout of structural constraints or penalty for each part is
all the same and rigid when applying the same component model. We think that
each anchor associates a layout of structural constraints. As discussed in [1], the
size of each component model is initialized by objects’ aspect ratio to avoid bad
local minimas. But in practice, two objects with the same aspect ratio may have
different viewpoints or poses. As seen from Figure 1, the two aeroplanes share
the same aspect ratio but have apparently different viewpoints. In this case, it
is inappropriate if we encourage the same layout of structural penalty to both
of them.

Motivated by those challenges, this paper tries to address these two limits.
Firstly, we propose a method of data decomposition for part based model which
not only significantly reduces memory usage and computational cost but also
outperforms other related systems. Secondly, we propose a spatial mixture mod-
eling method in which part location is described as mixture distribution learnt
from weakly labeled data. Thirdly, we integrate the spatial mixture model into
the proposed data decomposition framework and to the best of our knowledge,
the presented system achieves the state-of-the-art performance compared with
all other related methods from both competition and literature.

The rest of this paper is organized as follows. Section 2 reviews the related
work. Section 3 introduces the proposed method. Section 4 gives the experimen-
tal results. Section 5 concludes this paper.

2 Related work

As mentioned previously, many enhanced models with multiple features [3, 17],
more components or parts [5, 16] are proposed recently. The drawback or limit of
these methods is that their models’ complexity is too high in terms of computing
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and memory. Hussain et al [17] propose applying partial least squares (PLS) on
three different types of visual features. The supervised PLS is performed on
each separate root and part filter which requires carefully collecting training
data for each root and part model. Besides, how to perform data alignment for
such separate learning reductions is difficult. Moreover, it is infeasible for more
flexible part models with more features, components and parts.

Patrick et al [16] adopt sharing parts across intra and inter categories to
reduce the model’s complexity. Although sharing parts can reduce the number
of parameters, it may face the risk of decreased discrimination of parts. For
example, we’d like a car’s ‘wheel’ part has discrimination not only between a car
and a person but also between a car and a bus. If the ‘wheel’ part is shared across
car and bus category, its discrimination will certainly decrease when classifying
a window as a car or a bus.

Pedersoli et al [18] show that the dimensionality of filter and window search
space dominate most of the computation time. They propose a coarse-to-fine
search strategy to speedup the complex hierarchical part based model. In [19],
they propose a selective window sampling strategy via segmentation which makes
using multiple features based bag-of-words possible. Those methods indeed re-
duce search space and speedup training and testing, but they all do not improve
models’ discrimination. The promising way to improve models’ discrimination is
building more discriminative appearance feature or modeling strategy.

Yang et al [5] extends the DPBM into flexible mixture of parts which is “de-
formable” enough for pose estimation. They use the relative location between
parent node and children node to define the part type. Besides, in DPBM, only
one large rigid part is used to describe e.g., a ‘leg’. But in [5], a ‘leg’ is rep-
resented by many small flexible rigid parts so that matching articulated pose
becomes possible. However, this method requires fully annotated training data
and carefully predefined part dependence or part order. Therefore, training a
generic class model with weakly labeled training samples is difficult. Besides,
compared with larger parts, the discriminability of smaller parts may be de-
creased.

3 Proposed methods

The proposed system is schematically shown in Figure 2. With the input of differ-
ent features, we need to perform data calibration for further data decomposition.
Then the learnt basis is applied to factorize the feature into lower-dimensional
space. Besides, we consider each part’s configuration as a spatial mixture model.
The structural penalty for each part is more flexible. In the following paragraphs,
we will describe the details of the proposed method.

3.1 Data decomposition

As mentioned previously, these enhanced models via multiple features, more
components or parts always require huge computation resources. And they also
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Fig. 2: The pipeline of the proposed system, including two parts: data decomposition
and spatial mixture modeling.

face the higher risk of over-fitting. The first contribution of this paper is reducing
part based models’ complexity via data decomposition which enables efficient
and sufficient training and testing.

Before details, the feature map used in DPBM should be introduced. Cell
structured feature map [1] is computed at every scale. This kind of processing
enables us to use fast convolution routine for matching. As known that cell filter
is the basic unit of either root filter or part filter, therefore, we can perform data
decomposition on cell filter.

We know that some cell filters refer to background, while others to objects.
Besides, the size of cell filter is usually so small that each cell can not hold
sufficient appearance information to represent background or objects. Therefore,
the decomposition method should be unsupervised or label independent.
The original feature data (background or objects, and this is why we call our
method as data decomposition) can be reconstructed without supervision. This
is the basic principle we should follow. Another principle is the decomposition
should be efficient due to large scale application.

For unsupervised methods, there are e.g., principal components analysis
(PCA) and non-negative matrix factorization (NMF). Considering efficiency,
PCA rather than NMF is an ideal choice because it benefits from its linear
projection. Therefore, we propose using PCA to perform data decomposition.
This paper mainly focuses on reducing the complexity of those enhanced mod-
els. PCA is already a very useful method to address it. It should be mentioned
that this paper considers both training and testing model entirely in the context
of multiple features which is different from [1, 20]. [20] considers testing proce-
dure only, while in [1] PCA is used to analyze the basic 36-dim HOG feature
and finally they adopt the manually reduced 31-dim HOG feature based on their
analysis. Thus, the context and usage of PCA is different.

The problem of PCA is that its results heavily rely on the relative scaling
of the original data. If two variables have different units (e.g., kilometers and
miles.), the results produced by PCA will be different. Therefore, it is necessary
to do data calibration before learning the basis which is in fact very essential for
the system.
Proposed data calibration
Motivated by the promising performance of [3], this paper adopts HOG from [1]
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and LBP feature with uniform patterns as well. We use X1(i) and X2(j) (wherein
i ∈ [1, 31] and j ∈ [1, 59]) to denote HOG and LBP feature and η1 and η2
for their discriminative ability, respectively. Their relative discriminative ability
is defined as: λ = η1

η2
. The average accuracy evaluated on 20 categories from

PASCAL VOC2007 reported in [21] is used as their respective discrimination.
We don’t consider a category dependent discrimination for generalization. The
proposed data calibration includes two steps: 1) removing variables with low
sample variance; 2) Re-scaling two different sources of data.

As we know, variables with low variance from the same source data indicate
low contribution or even damage to discrimination. Therefore, we can remove
those variables with very low variance. In [3, 21], the results show that the dis-
crimination of HOG is superior over LBP on average. Motivated by these results,
we only remove the variables from LBP. Suppose the variance of X2(j) is var2(j)
and the 20% lowest variance (it is determined empirically.) is used as threshold
thresh. Then we remove the variance according to Eq.1.

X2 (j) =

{
0, var2 (j) ≤ thresh
X2 (j) , if else

(1)

The second step is to re-scale the different source data. After removing the
variables with low variance from LBP, the mean value of X1 and X2 is computed
and denoted as u1 and u2, respectively. X1 is chosen as the reference scale for
its better discrimination. Then the relative discriminative ability λ is considered
into re-scaling problem according to Eq.2.

X2 =
X2
u2

u1
· λ

(2)

From the statistics, we find that u2 is larger than u1. Thus, we need to re-scale
X2 to smaller scale. Besides, the larger λ is, the less contribution that X2 gives.
Therefore, we divide X2 by λ together with u2

u1
to re-scale the original data to

an appropriate relative scale considering both relative mean value and discrimi-
nation.
Implementation details. Similar to [1], the models are trained horizontal sym-
metric. The question is how to find the corresponding relationship between mir-
rored features in decomposed space or subspace which is another key problem
in our detector.

Suppose the extracted low-level feature from one side view image is f , then
we can get its corresponding symmetric feature f

′
. We use d, d

′
and g to denote

their factorized feature in subspace and decomposition function respectively.
Then, we get

d = g (f)

d
′

= g
(
f

′
)

(3)

The simplest way of finding their corresponding relationship is regressing d
′

on
d. Then it turns to find the transformation matrix L through d′ = g (f ′) = dL.
In this paper, we adopt PLS which is suitable for multivariate regression.
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Fig. 3: A toy example for illustrating the motivation of spatial mixture modeling.

3.2 Spatial Mixture Modeling

We now consider working out the flexible part matching scheme. As we know, the
response of each part pi is simultaneously determined by appearance information
and structural penalty.

h (pi) = max
si∈ζ

(ha (si)− hs (si)) (4)

where ha and hs are the appearance and structural response respectively. Part’s
moving location si : (xi, yi) (of dimensionality d) belongs to the searching space
ζ. In the basic DPBM, the structural penalty is achieved by

hs (si) = wi
′d (si) , where d (si) =

(
dxi dx

2
i dyi dy

2
i

)
(5)

where wi
′ and d (si) are the deformation coefficients and structural features re-

spectively. In the basic DPBM, only a single layout of structural constraint is
used to describe part’s distribution. If the viewpoint or pose within the same as-
pect ratio is the same, a single layout of structural constraints would be sufficient
to model the part’s spatial distribution. In practice, two objects with the same
aspect ratio usually have apparently different viewpoints or poses (e.g.,Figure 1
and Figure 3). Therefore, a single layout of structural constraints can not capture
such variation and spatial mixture modeling becomes necessary.

In this paper, we assume that the part spatial distribution follows mixture
Gaussian distribution. Then we present the spatial mixture modeling based on
Gaussian to capture the variations of parts. In this case, the system can make a
more “flexible” decision for the structural penalty for each part. Naturally, we
define the score of each part as:

h (pi) = max
si∈ζ

ha (si)−
K∑
j=1

λi,jhs,j (si)

 (6)

where K is the number of Gaussian components and λj is the weight of structural
penalty from the jth component. In this case, the structural penalty is weighted
accumulated based on the contribution from each Gaussian component. There-
fore, when the relative location between the part current moving location and
each Gaussian component changes, the layout of structural constraints for that
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aeroplane cat
Fig. 4: Here are two examples of deformation model from spatial mixture modeling: the
left one is about aeroplane and the right one is cat.

part will change accordingly which makes flexible part matching possible. λj is
obtained through:

λi,j = wi,jg (si|µj , Σj)

s.t
K∑
j=1

wi,j = 1 and wi,j ≥ 0
(7)

where wi,j are the mixture weights, and g (si|µj , Σj) is the component Gaussian
density. µj , Σj are the mean value and covariance matrix of the jth Gaussian
component in the mixture. Each Gaussian probability density is

g (si|µj , Σj) =
1

(2π)
d/2|Σj |1/2

exp

{
−1

2
(si − µj)TΣ−1j (si − µj)

}
(8)

The vector φ = (w, µ,Σ) is the unknown parameters of the spatial mixture
model which needs to be estimated.

There are various algorithms for estimating the parameters of φ. A popu-
lar method for maximizing the likelihood of the training data is expectation-
maximization (EM). The basic idea of EM algorithm is beginning with initial
parameters φ, to evaluate the new parameters φ′, for which we hope the likeli-
hood is larger. The new parameters then become the initial model for the next
iteration and the process is repeated until converged. In our system, we use K-
means to generate the initial parameters.
Implementation details. Our spatial mixture embedded model starts from
training a basic DPBM. Then we collect the part location from those positive
samples of 70% overlap with ground truth. After that K-means is applied over
each part’s location. The mean value and covariance matrix are generated from
each cluster. The initial weight for each Gaussian component is determined by
the fraction of the number of points in each cluster. With the initial parameters,
EM algorithm is executed to find the proper parameters φ. The learnt µ is then
used as the new reference anchor points in the spatial mixture embedded part
based model. We use the model with spatial mixture modeling to mine positive
and negative training samples for further iteratively training. The score of each
part location is determined by Eq.6. The iterative training process terminates
at a certain iterations or when the model changes little. The full algorithm is
summarized in Algorithm 1.
Discussions. The spatial mixture model utilizes mixture layouts of structural
constraints and provides a flexible part matching scheme which can well ad-
dress the problem caused by variations in viewpoint or pose. The superiority of
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Algorithm 1: Training Spatial Mixture Embedded Model.

Input : Positive/Negative samples
Output: model

1: Train basic DPBM. N : the number of components;
for component i← 1 to N do

for k ← 1 to iter1 do
Train root model: model{i}.root;

for k ← 1 to iter2 do
Train part based model: model{i}

2: Initialize spatial mixture embedded model ;
for component i← 1 to N do

Apply model{i} on positive training samples;
Collect part locations into locsi,p;
// p is the subscript for each part

Clustering, generate the initial parameter φi,p = (wi,p, µi,p, Σi,p) for
each cluster;
Estimate the parameter φ′

i,p =
(
w′

i,p, µ
′
i,p, Σ

′
i,p

)
of mixture model

with EM and φi,p;
Initialize spatial mixture model with φ′

i,p;

3: Update model and retrain;
for component i← 1 to N do

for i← 1 to iter3 do
Apply updated model{i} for collecting training data;
Part response is determined according to Eq. 6;
Update parameters and retrain model{i}.

our method can be graphically demonstrated by Figure 3. The locations of the
right bottom part (foot part) collected from positive samples are plotted in the
left image in Figure 3. The blue point denotes the anchor point in the original
DPBM. Apparently, the original DPBM will punish the foot part in P2 and P3

slightly, while punishing that part in P1 heavily which in fact is not desired for
that pose. In our system, based on the proposed spatial mixture model, we can
match each part more “deformably” or flexibly with mixture layouts of struc-
tural penalty (Eq. 6) rather than the original DPBM. Therefore the structural
penalty from spatial mixture model can relieve the penalty for the foot part in
P1 while still retain slight punishment for that part in P2 and P3. In a word,
the proposed method is capable of capturing variations in viewpoint or poses
by allowing more flexible part matching. Figure 4 gives an example of learnt
deformation model with spatial mixtures. The red cross in each part denotes
the learnt anchor for that part. An apparent relative displacement of anchors
associated with the same part can be found in Figure 4.
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4 Experiments

We evaluate the proposed method on challenging PASCAL VOC dataset [14]
which is widely recognized as difficult testbed for object detection and most
algorithms report their results on this dataset. We use Average Precision (AP)
[14] score as the criterion, which is widely adopted in PASCAL VOC challenge.
As mentioned in 3.1, HOG and LBP are used as the low-level features. All the
models are trained with six components, and each component associates eight
parts of cell size 6×6. The experiments are mainly divided into three subsections:
1) empirical results with data decomposition; 2) experimental results with spatial
mixture embedded model; 3) full results on PASCAL VOC2007 and VOC2010
datasets.

4.1 Data Decomposition

In this subsection, the experiments include three parts: 1) determining the fac-
torized lower dimensionality; 2) studying the effect of data calibration and 3)
training and testing computational cost and accuracy. These experiments on
PASCAL VOC2007 are designed for verifying the effectiveness of the proposed
methods, hence we only conduct the experiments on several categories. The final
complete results will be given in 4.3.
Determining dimensionality. Table 1 illustrates how changing PCA dimen-

category K=15 K=20 K=25 K=30 K=35 K=40 K=50

aeroplane 1.7 14.4 16.7 33.2 34.5 34.4 32.6
Table 1: This table shows how changing PCA dimension K affects the results.

sion K affects the performance. As seen from Table 1, when K exceeds 30, the
performance tends to be stable. Considering the trade-off between efficiency and
effectiveness, we set K to 40 which is found performing well on all 20 categories
(Note: Before applying PCA, data calibration is performed).
Effect of data calibration. The experimental results are shown in Figure 5.
Three groups of experiments are conducted: one is the näıve combination which
refers to the method concatenating different types of features into a unified
feature vector; The second is that we directly perform data decomposition on
original data without any calibration; The third is the proposed method. As
seen from Figure 5, the results of directly applying PCA without any calibration
are usually bad. Because the dimensionality and mean value of LBP feature are
larger than HOG, the learnt basis from PCA often has bias to LBP which in
fact shows poorer discriminability on average than HOG. The results from the
complete experiments on aeroplane and bottle verify the positive effect of
data calibration via improving noprocess by 5% and 2.2%, respectively.
Training and testing computation cost and accuracy. Table 2 summa-
rizes the quantitive results. All these experiments are conducted on the same
computer with the same configuration. The computer is configured with Intel
E5520 CPU of 2.27GHz. The training time for cow is all most the same. But the
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Fig. 5: Experimental results of data calibration. naive refers to the näıve combination
of HOG and LBP. noprocess denotes the method that perform data decomposition
without any calibration. complete represents the proposed data decomposition with
data calibration. Class Training Testing AP score

(hour) (hour)

Baseline [1, 22] cow - 1.4 25.2
cat - 1.3 19.3

Näıve cow 18.1 3.7 28.1
cat 24.1 3.5 23.3

Boost[3] cow 17.9 3.5 26.9
cat 23.2 3.4 24.2

DD cow 18.0 1.9 30.4
cat 18.3 1.8 24.6

Table 2: Training and testing computation cost and accuracy comparison experiments.
Baseline refers the result from running the provided models [1, 22] in the same environ-
ment. Naı̈ve stands for näıve combination method. Boost refers the method described
in [3]. DD denotes the proposed system without spatial mixture modeling.

proposed method achieves a speedup, of more than 1.9 times than näıve com-
bination during evaluation. For the cat category, the training time is less than
näıve combination, and speedup in evaluation stage is nearly two-fold. The näıve
combination requires O (90) (31+59=90) operations at each cell filter while the
proposed method requires only O (40) operations. The practical speedup factor
is about 1.8 (1.8 < 90

40 = 2.25) which indicates the decomposition costs a bit time
but is still very efficient especially for multiple features. The memory consump-
tion is also reduced from original 10G byte to now 4G byte on average during
training. We also implement a näıve version of the Boost method according
to their description in [3]. We find that the training and testing computational
cost is almost the same with näıve combination. Moreover, the proposed method
achieves better performance on these two categories than [3]. The improvement
over baseline method [1] proves that combining texture feature indeed helps
discriminability which has been verified in [3] as well. The improvement over
the näıve combination and [3] verifies that data decomposition over the original
multiple features can still improve models’ discriminability. The reason may be
the presented data decomposition suppresses undesired noise and the reduced
complexity makes the model can be trained more sufficiently.

4.2 Spatial Mixture Modeling

We take a “data-driven” approach to determine the number of mixture compo-
nents K by analyzing the parts’ spatial distribution. Limited by space, we plot
only two parts distribution in Figure 6 randomly chosen from person and chair
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Fig. 6: Part spatial distribution. The left one is from person’s middle part, and the
right one is from chair.
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Fig. 7: Experimental results of spatial mixture modeling. Baseline is the result from
running the provided model [1, 22] on PASCAL VOC2007.

categories. We can find that the number of peaks is almost 2. Besides, if K is
larger, the parameters of the model are more such that it will plague sufficiently
training model and efficient testing. Therefore, we set K to 2 generally for all
categories on VOC datasets. In this subsection’s experiments, we use HOG from
[1] without data decomposition. The baseline is the standard DPBM [1, 22]. As
seen from Figure 7, the proposed spatial mixture embedded model improves the
baseline by 2.4% and 2.8%, respectively. The improvement verifies the effective-
ness of the proposed spatial mixture embedded model which provides flexible
and more “deformable” part configuration.

4.3 Complete results on PASCAL VOC datasets

Motivated by the above results, we integrate the proposed spatial mixture em-
bedded model into the data decomposition framework and evaluate the whole
system on PASCAL VOC2007 and VOC2010.
Results on PASCAL VOC2007. Table 3 gives the results of our detector on
PASCAL VOC2007. The results here are without specific context based post-
processing. We compare our method with other related representative methods.

As shown in Table 3, DDSSM (the proposed complete system) obtains the best
AP score in 7 of 20 categories. The mean AP score is 36.0%, which is the best
among these compared methods. DDNoSSM (the proposed method without spatial
mixture modeling.) also obtains best score in 3 categories, and the mean AP is
the second best among these methods. The closest approach to us is from [3],
our method without spatial mixture modeling exceeds it by 0.9%. The whole
system improves [3] by 1.7%. The improvement of DDSSM over DDNoSSM proves
that the proposed spatial mixture modeling improves models’ discriminability
on average. The improvement is promising because the result from [3] is already
very challenging. Besides, the proposed system shows advantage over [3] in terms
of efficiency. This is currently the state-of-the-art performance without context
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plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv meanAP

V4 [22, 1] 28.9 59.5 10.0 15.2 25.5 49.6 57.9 19.3 22.4 25.2 23.3 11.1 56.8 48.7 41.9 12.2 17.8 33.6 45.1 41.6 32.3
UCI [23] 28.8 56.2 3.2 14.2 29.4 38.7 48.7 12.4 16.0 17.7 24.0 11.7 45.0 39.4 35.5 15.2 16.1 20.1 34.2 35.4 27.1
LHS [4] 29.4 55.8 9.4 14.3 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 50.4 38.4 36.6 15.1 19.7 25.1 36.8 39.3 29.6

MKL [24] 37.6 47.8 15.3 15.3 21.9 50.7 50.6 30.0 17.3 33.0 22.5 21.5 51.2 45.5 23.3 12.4 23.9 28.5 45.3 48.5 32.1
LatentCRF [2] 31.9 57.0 9.1 15.2 26.0 42.7 49.3 14.5 15.2 18.5 24.2 11.8 49.1 41.9 35.7 14.5 18.9 23.3 34.3 41.3 28.7

C2F [18] 27.7 54.0 6.6 15.1 14.8 44.2 47.3 14.6 12.5 22.0 24.2 12.0 52.0 42.0 26.8 10.6 22.9 18.8 35.3 31.1 26.7
SMC [25] 26.0 56.0 10.0 11.0 21.0 47.0 50.0 16.0 19.0 23.0 20.0 12.0 51.0 45.0 37.0 12.0 17.0 29.0 41.0 38.0 29.1
PLS [17] 18.0 41.1 9.2 9.8 24.9 34.9 39.6 11.0 15.5 16.5 11.0 6.2 30.1 33.7 26.7 14.0 14.1 15.6 20.6 33.6 21.3

ParAttr [26] 25.6 33.0 6.8 3.2 16.3 47.7 37.9 14.0 0.9 9.6 17.0 11.5 23.3 32.5 19.8 5.3 29.9 18.0 16.7 32.1 20.1
HStruct [27] 31.7 56.3 1.7 15.1 27.6 41.3 48.0 15.2 9.5 18.3 26.1 11.3 48.5 38.9 35.8 14.8 17.7 18.8 34.1 39.8 27.5

ExModel [28] 20.8 48.0 7.7 14.3 13.1 39.7 41.1 5.2 11.6 18.6 11.1 3.1 44.7 39.4 16.9 11.2 22.6 17.0 36.9 30.0 22.7
Boosted[3] 36.7 59.8 11.8 17.5 26.3 49.8 58.2 24.0 22.9 27.0 24.3 15.2 58.2 49.2 44.6 13.5 21.4 34.9 47.5 42.3 34.3

DDNoSSM 34.4 59.4 11.1 16.8 26.7 50.0 60.2 24.6 22.5 30.4 30.8 16.0 61.3 51.3 44.0 13.5 20.8 39.2 48.5 42.6 35.2
DDSSM 35.8 60.4 10.9 17.3 29.9 50.1 62.6 25.5 22.8 38.2 32.1 16.1 59.9 51.1 44.8 13.2 19.8 38.5 49.5 42.6 36.0

Table 3: Full results on PASCAL VOC 2007. DDNoSSM denotes the proposed method without spatial mixture modeling,
while DDSSM with spatial mixture modeling. V4 is the popular DPBM proposed by Felzenszwalb et al[1, 22]. UCI refers
to the method with multi-class layout [23] which wins Marr prize at ICCV2009. LHS stands for the method [4] which
shows very competitive performance in recent years. MKL [24] is the winner method at PASCAL VOC2009 challenge,
which uses four kinds of multi-level features. LatentCRF is from [2], in which a latent CRF based on a flexible assembly
of parts is proposed for object detection. C2F represents the method described in [18]. This paper proposes a coarse-to-
fine framework for deformable object detection. SMC denotes the scalable multi-class object detection [25], in which a
shared codebook is jointly trained over all classes. PLS refers the method present in [17]. In ParAttr method [26], objects
are described using a spatial model based on its constituent parts. HStruct represents the discriminative hierarchical
structure model based on multiple features which is described in [27]. ExModel is an interesting method introduced
recently in [28]. Boosted refers the winner method [3] in PASCAL VOC2010 challenge. Whether from the number of
single class’s best score or the mean AP, the proposed method performs best. It should be noted here the proposed
method has not be filtered by context information.

plane bicycle bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv meanAP

V4 [22, 1] 45.4 49.8 9.5 11.9 27.5 49.0 42.4 27.7 16.8 20.3 10.2 19.2 40.0 47.0 41.8 8.7 26.1 12.2 41.4 34.3 29.1
sharepart [16] 24.7 38.2 0.0 1.2 0.2 33.3 37.7 7.3 1.4 4.6 8.1 8.1 21.5 31.8 11.5 6.3 17.0 5.1 9.6 23.9 14.6

Boosted [3] 49.6 51.0 12.7 15.1 26.1 50.9 44.4 30.6 17.3 25.3 15.2 22.4 42.3 51.3 43.5 8.5 28.8 20.6 43.8 36.4 31.8
SegAs [19] 58.2 41.9 19.2 14.0 14.3 44.8 36.7 48.8 12.9 28.1 28.7 39.4 44.1 52.5 25.8 14.1 38.8 34.2 43.1 42.6 34.1

DDNoSSM 45.5 53.3 14.7 16.8 33.2 53.0 48.3 35.0 17.4 31.0 22.4 24.5 45.3 52.0 44.8 12.0 37.7 24.7 45.9 36.5 34.7
DDSSM 49.9 54.9 14.9 17.0 33.6 53.6 50.6 35.4 18.1 31.4 21.7 24.5 45.8 52.6 49.2 11.6 38.2 25.5 47.4 38.3 35.7

Table 4: Full results on PASCAL VOC2010. V4 is from [22] without context rescoring. sharepart refers the method
described in [16]. In [16], certain parts are shared across mutli-class for multi-class object detection. Boosted [3]
represents the winner method of PASCAL VOC2010. We run the detector implemented by ourself on PASCAL
VOC2010. SegAs is the latest result from [19] which mainly focuses on selecting windows with high “objectness” via
segmentation. Their object appearance model is based on bag-of-words. DDNoSSM refers the proposed method without
spatial mixture modeling, while DDSSM with spatial mixture modeling.

rescoring and selective window search (e.g., [19]). MKL method with four differ-
ent features also provides very competitive results, and our system gets better
results by nearly 4%. And it is reported [24] that the MKL method takes roughly
67 seconds per image, therefore, the time for evaluating the whole VOC2007
is about 92 hours. Our method not only outperforms it in accuracy but also
is very computational efficient. The proposed method takes about 2 hours for
evaluation (as we run in different environment, the time here are only for rough
comparison). We also noted that the additional experiment of [17] in his thesis
[29] shows that they achieved 36.0% which is comparable to us. But our method
does not need careful part calibration.
Results on PASCAL VOC2010. The complete results on PASCAL VOC2010
are given in Table 4. We compare with other four methods which published their
results on PASCAL VOC2010. As seen from Table 4, DDSSM obtains the best
score in 11 out of 20 categories and the best mean AP of 35.7% among all these
methods. DDNoSSM also obtains the second best mean AP. SegAs [19] focuses on
selective window sampling via segmentation. The proposed method exceeds [19]
by 1.6% without any selective search. Also the selective search via segmentation
is always time consuming. Compared with [3] in which low-level features used
are similar to us, the proposed method without spatial mixture modeling im-
proves [3] by nearly 3%, and over 5% improvement which is very challenging on
PASCAL VOC datasets is observed on bottle, cow, diningtable and sheep

categories. These results indicate that appropriate data decomposition over dif-
ferent sources of data for part based model not only reduces model’s training and
testing computational cost but also improves the accuracy on average. Besides,
spatial mixture modeling improves DDNoSSM by about 1% on average, which fur-
ther indicates the proposed spatial mixture modeling helps discriminability. In a
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word, our system obtains the state-of-the-art performance compared with those
methods without context rescoring on challenging PASCAL VOC datasets for
detection task. Moreover, compared with other related challenging systems, the
proposed algorithm requires less memory and computation time both in training
and testing phase.

5 Conclusion

This paper has presented an enhanced part based model by means of data de-
composition and spatial mixture modeling. We have made three major contribu-
tions: 1) We have studied the problem of complexity of those enhanced models
and address this problem with data decomposition. In practice, we propose the
methods for data calibration and finding transformation matrix which are very
essential for the whole system. 2) We firstly build a more “deformable” and
flexible part based model via spatial mixture modeling without fully annotated
training samples. 3) The proposed data decomposition over multiple features
for part based model not only reduces the computation requirement but also
improves the accuracy and exceeds the previous state-of-the-art algorithms. The
integrated system with data decomposition and spatial mixture modeling finally
obtains the state-of-the-art performance on PASCAL VOC datasets compared
with other methods without context.

Currently, the proposed system is still far from real time. On one hand, we
can adopt the strategy such as [18, 19] to reduce the search space. On the other
hand, we will continue to study the data decomposition for part based model
following the principals described in this paper to reduce the model to a much
lower dimensionality. Besides, our future work will also include learning part
mixtures as well as the proposed spatial mixtures from weakly labeled data.
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