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The goal of this paper is to review the state-of-the-art progress on visual tracking methods, classify them

into different categories, as well as identify future trends. Visual tracking is a fundamental task in many

computer vision applications and has been well studied in the last decades. Although numerous

approaches have been proposed, robust visual tracking remains a huge challenge. Difficulties in visual

occlusion and camera motion. In this paper, we first analyze the state-of-the-art feature descriptors which

are used to represent the appearance of tracked objects. Then, we categorize the tracking progresses into

three groups, provide detailed descriptions of representative methods in each group, and examine their

positive and negative aspects. At last, we outline the future trends for visual tracking research.

& 2011 Elsevier B.V. All rights reserved.
1. Introduction

Visual tracking is an important task within the field of computer
vision. The proliferation of high-end computers, the availability of
high quality video cameras, and the increasing need for automated
video analysis have generated a great deal of interest in visual
tracking algorithms. The state of this art has advanced significantly in
the past 30 years [1–8]. Generally speaking, the use of visual tracking
is pertinent in the tasks of motion-based recognition, automated
surveillance, video indexing, human–computer interaction and vehi-
cle navigation, etc.

1.1. The problems in visual tracking

Visual tracking, in general, is a very challenging problem due
to the loss of information caused by the projection of the 3D
world on a 2D image, noise in images, cluttered-background,
complex object motion, partial or full occlusions, illumination
changes as well as real-time processing requirements, etc. In the
early years, almost all visual tracking methods assumed that the
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object motion was smooth and no abrupt appearance change.
However, tremendous progress has been made in recent years.
Some algorithms can deal with the problems of abrupt appear-
ance change, leaving out from scenes and drifting, etc. To build a
robust tracking system, some requirements should be considered.

Robustness: Robustness means that even under complicated
conditions, the tracking algorithms should be able to follow the
interested object. The tracking difficulties may be cluttered back-
ground, partial and full changing illuminations, occlusions or
complex object motion.

Adaptivity: Additional to various changes of the environment
that an object is located in, the object itself also undergoes
changes. This requires a steady adaptation mechanism of the
tracking system to the actual object appearance.

Real-time processing: A system that needs to deal with live
video streams must have high processing speed. Thus, a fast and
optimized implementation as well as the selection of high
performance algorithms is required. The processing speed
depends on the speed of the observed object, but to achieve a
smooth output video impression for human eyes, a frame-rate of
at least 15 frames per second has to be established.
1.2. How does visual tracking work?

First, we need a description for the object to be tracked. This can,
for example, be a template image of the object, a shape, texture or
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color model or something alike. Building such an initial object
description is a very critical and hard task, because the quality of
the description directly relates to the quality of the tracking
process. Additionally, such a description is not always available to
the tracking application beforehand and thus, it may need to be
built up during runtime.

Second, objects are usually embedded into certain context.
Visual context has been successfully studied in object detection
tasks as well as the image understanding field. For instance,
various parts-whole relations have been exploited by visual
detectors. In the detection, only stable, long-term and statistically
significant object-context relationships are easily incorporated,
e.g., [10,11]. In visual tracking, many temporary, but potentially
very strong links exist between the tracked object and the rest of
the image. Appropriate integration of such context information
into a tracking framework will substantially benefit the research
of visual tracking.

Moreover, even having a good object description available a
priori or established during runtime, adaptivity to appearance
changes is necessary to achieve tracking robustness. These
changes can arise from small rotations or geometrical transfor-
mations of the object, but also from changing texture. To handle
such variations, the object model needs to be adjusted to the new
circumstances from time to time. The major problem of building
such an adaptive tracking system is the degradation of the
appearance model caused by the inaccuracy in the estimation of
the foreground and background. Most commonly the foreground
and background are divided by a bounding box or a region around
the location of the object. No matter how tight the region is, such
a partition is too rough because some background regions are
treated as a part of the foreground, especially when the location
of the object is not precise or the object is occluded. This problem
is called the Drifting Problem [9].

In a word, most visual tracking methods include image input,
appearance feature description, context information integration,
decision and modal update, as shown in Fig. 1. For different
methods, emphasis is not the same, so their schemes will be
different. Due to the great success of Particle Filtering [12], also
known as sequential Monte Carlo methods (SMC), visual tracking
has been formulated as a problem of Bayesian inference in state
space. Compared with the regular exhaustive search-based meth-
ods, the main advantage of the use of a particle filter is the
reduction of sampling patches during tracking. Another benefit of
the particle filter is that the sampling effort can be kept constant,
independent to the size of the object to track which is not the case
with simply expanding the search region around the object with a
Fig. 1. The flowchart of visual tracking.
fixed factor. Despite its great success, Particle Filtering often
suffered from the sample impoverishment problem [12], which
is due to the suboptimal sampling technique. Therefore, introdu-
cing more advanced Monte Carlo sampling methods would
greatly elevate the visual tracking performance.

1.3. Aim and outline

Yilmaz et al. [13] reviewed the object tracking methods before
2006, presenting detailed analysis and comparisons of various
representative methods. Our work aims at introducing recent
advances in visual tracking field as well as identifying future
trends. The methodology of this paper can be found at Fig. 2. In
this paper, we first present representative feature descriptors for
visual tracking in Section 2. Then we summarize recent advances
in online learning based tracking methods in Section 3. Section 4
is dedicated to discussing the integration of context or knowledge
information into visual tracking. In Section 5, we describe the
recent progress on Monte Carlo sampling methods. Conclusion
and future directions can be found in Section 6.
2. Feature descriptors for visual tracking

Selecting the right features plays a critical role in visual
tracking. In general, the most desirable property of a visual
feature is its uniqueness so that the objects can be easily
distinguished in the feature space. During the last decade, detec-
tion of objects of a particular class, such as humans or cars, has
absorbed increasing interest in the computer vision field. Visual
detection is difficult because the object appearance may vary due
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to many factors, including viewpoint, occlusion, illumination,
texture, and articulation. This has motivated the invention of
different image features that capture different characteristic
properties. Some existing methods for object detection base their
detectors on a single type of features. This enables a direct
comparison of the detection performance of different features.
Others try to integrate multiple feature types to improve perfor-
mance. In fact, any feature descriptor used for visual detection can
be adapted for visual tracking. Below, we present recent repre-
sentative advances in feature descriptors motivated from recent
innovations in the visual object detection area.

2.1. Gradient features

Recently, gradient features have been proved advantageous in
human detection [14,15]. Numerous techniques dedicated to
related research have been proposed. Generally speaking, there
are two categories of gradient features.

One main category of gradient based methods is to use shape/
contour to represent objects, such as the human body. Gavrila
[16] presented a contour based hierarchical chamfer matching
detector for pedestrian detection. Lin et al. [17] extended this
work by decomposing the global shape models into parts and
constructing a hierarchical tree for the part templates. Ferrari
et al. [18] used the network of contour segments to represent the
shape of an object in order to detect object in cluttered images.
Wu and Nevatia [19] proposed edgelet features, which are a type
of silhouette oriented features to represent the local silhouette of
the human. The human detection problem is then formulated as a
maximum a posteriori (MAP) estimation.

Another main category is to use the statistical summarization
of the gradients. For example, in [20], Lowe introduced the well-
known SIFT descriptor for object recognition. Later, Bay et al.
proposed SURF [21], which is a much faster scale and rotation
invariant interest point descriptor. Dalal and Triggs [14] used the
Histogram of Oriented Gradient (HOG) descriptor in training SVM
classifier for pedestrian detection. Zhu et al. [22] improved its
computational efficiency significantly by utilizing a boosted
cascade of rejectors. Maji et al. [23] also demonstrated promising
results using the multi-resolution HOG descriptor and the faster
kernel SVM classification. Felzenszwalb et al. [24] described a part
based deformable model based on the multi-resolution HOG
descriptor for pedestrian tracking. In Gao et al. [25], proposed a
novel feature descriptor named Adaptive Contour Feature (ACF)
for human detection and segmentation. This feature consists of a
chain of a number of granules in Oriented Granular Space (OGS)
that is learnt via the AdaBoost algorithm. In Liu et al. [26],
proposed the granularity tunable gradients partition (GGP)
descriptor for human detection. The concept granularity is used
to define the spatial and angular uncertainty of the line segments
in the Hough space. Mikolajczyk et al. [27] introduced position-
orientation histogram features for human detection. Leibe et al.
incorporated the SIFT descriptor into their implicit shape model
(ISM) for human detection in [28]. In Gall et al. [29], extended the
Hough-transform based class-specific ISM to construct a novel
Hough forest detection method.

2.2. Color features

So far, intensity-based descriptors have been widely used for
feature representation at salient points. To increase the discrimi-
native power, color descriptors have been proposed, which are
robust against certain photometric changes. The apparent color of
an object is influenced primarily by two physical factors, (1) the
spectral power distribution of the illuminant and (2) the surface
reflectance properties of the object. Recent advances in color
descriptors can be categorized into novel histogram-based color
descriptors and SIFT-based color descriptors.

In the HSV color space, it is known that the hue becomes
unstable near the grey axis. Van de Weijer et al. [30] applied an
error propagation analysis to the hue transformation. The analysis
shows that the certainty of the hue is inversely proportional to the
saturation. Therefore, the hue histogram is made more robust by
weighing each sample of the hue by its saturation. The H color
model is therefore scale-invariant and shift-invariant with respect
to light intensity. In Gevers et al. [31], proposed an rg-histogram
descriptor, which is based on a normalized RGB color model.
Because of the normalization, r and g are scale-invariant and
therefore invariant to light intensity changes, shadows and shading.

The SIFT descriptor is not invariant to light color changes,
because the intensity channel is a combination of the R, G and B
channels. Van de Weijer et al. [30] introduced a concatenation of
the hue histogram with the SIFT descriptor, which is scale-
invariant and shift-invariant. In [32], color invariants had been
first used as an input to the SIFT descriptor, which leads to a CSIFT
descriptor that is scale-invariant with respect to light intensity.
More detailed performance evaluation of color descriptors can be
found in [33].

2.3. Texture features

Texture is a measure of the intensity variation of a surface
which quantifies properties such as smoothness and regularity
[34–36]. Gabor wavelet [37] is probably the most studied texture
feature. The Gabor filters can be considered as orientation and
scale tunable edge and line detectors, and the statistics of these
micro-features in a given region are often used to characterize the
underlying texture information. In recent years, increasing interest
is paid on investigating image’s local patterns for better detection
and recognition. Especially, local patterns that are binarized with
an adaptive threshold provide state-of-the-art results on various
topics, such as face detection and image classification.

In Ojala et al. [38], developed a very efficient texture descriptor,
called Local Binary Patterns (LBP). The LBP texture analysis
operator is defined as a grayscale invariant texture measure,
derived from a general definition of texture in a local neighbor-
hood. The most important property of the LBP operator is its
tolerance against illumination changes. Another equally important
characteristic is its computational simplicity. Many variants of LBP
have been recently proposed, including Local Ternary Patterns
(LTP) [39] and multi-scale block LBP (MB-LBP) [40]. Zhang et al.
[41] proposed the local Gabor binary pattern for face representa-
tion and recognition. In Mu et al. [42], proposed two variants of
LBP: Semantic-LBP and Fourier LBP. These new features can work
in perceptually color space and prove more suitable for the human
detection task. In inspired by Weber’s Law, Chen et al. [43],
developed a new local descriptor called the Weber Local Descriptor
(WLD). It is based on the fact that human perception of a pattern
depends not only on the change of a stimulus (such as sound,
lighting) but also on the original intensity of the stimulus.

2.4. Spatio-temporal features

Local space-time features have recently become a popular
representation for action recognition and visual detection. Local
space-time features capture characteristic salient and motion pat-
terns in video and provide relatively independent representation of
events with respect to their spatio-temporal shifts and scales as well
as background clutter and multiple motions in the scene. Several
methods for feature localization and description have been pro-
posed in the literature and promising results were demonstrated for
action classification and various detection tasks [44].



Table 1
Recent advances on visual descriptors.

Descriptor Representative Methods

Gradient Features HOG, SIFT, ISM [14–29]

Color Features CSIFT [30–33]

Texture Features LBP, WLD [34–43]

Spatio-Temporal Features 3DSIFT, DLBP [44–53]

Multiple Features Fusion Sigma Set, HOG-LBP [54–64]

Biological Features EBIM, ARs [65,66]
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Ke et al. [45] studied the use of volumetric features for event
detection in video sequences. They generalized the notion of 2D
box features to 3D spatio-temporal volumetric features, which is
an extension of the Haar-like features [46]. Liu et al. [47]
proposed a contour-motion feature descriptor for robust pedes-
trian detection. The space-time contours are used as the low level
representation of the pedestrian. A 3D distance transform is then
applied to extend the one-dimensional contour into three-dimen-
sional space. Willems et al. [48] proposed the Hessian detector
which is scale invariant both spatially and temporally as a spatio-
temporal extension of the Hessian saliency measure used in [49]
for blob detection in images. The detector measures the saliency
with the determinant of the 3D Hessian matrix. The HOG/HOF
descriptors were introduced by Laptev et al. [50]. To characterize
local motion and appearance, the authors computed coarse
histograms of oriented gradients (HOG) and optic flow (HOF)
accumulated in space-time neighborhoods of detected interest
points. Scovanner et al. [51] proposed a 3D SIFT descriptor. They
used a bag of words approach to represent videos, and discovered
relationship between spatio-temporal words. The HOG3D
descriptor was proposed by Kläser et al. [52]. It is based on
histograms of 3D gradient orientations. In [53], a transform based
spatio-temporal descriptor was proposed for human action recog-
nition. Willems et al. [48] proposed the extended SURF (ESURF)
descriptor which extends the image SURF descriptor to videos.
Zhao and Pietikäinen [54] proposed the dynamical Local Binary
Patterns (DLBP) on three orthogonal planes, and used it for
dynamic texture recognition.

2.5. Multiple features fusion

Since the emergence of various feature descriptors, feature
fusion has become more and more important for image and video
retrieval, visual tracking and detection. The feature fusion scheme
typically achieves boosted system performance or robustness,
which attracts much attention of researchers from multimedia,
computer vision and audio–visual speech processing, etc.

Tuzel et al. [55] utilized the covariance matrix as the descriptor
for human representation. Their method can encode the gradients’
strength, orientation and position information in symmetric positive
definite covariance descriptors which lie on a Riemannian manifold.
The main disadvantage of the covariance matrix lies in that the
operations through Riemannian geometry are usually time-consum-
ing. Hong et al. [56] proposed a novel descriptor called Sigma Set.
Compared with the covariance matrix, Sigma Set is not only more
efficient in distance evaluation and average calculation, but also
easier to be enriched with first order statistics.

Besides the invention of new multiple features, some works
show that using the combination of existing features can also
improve the performance. Wu and Nevatia [57] combined the
existing heterogeneous features, e.g. edgelet, HOG and covariance
matrix, into a boosting framework to improve both the accuracy
and the speed. Han et al. [58] used generalized Swendsen–Wang
cut to generate the composite of Haar-like features and their
results showed that this composition leads to generic improve-
ment for the Haar-like features. Shao and Ji [59] combined MHI
and PCOG for human motion classification.

Wang et al. [60] proposed a new HOG-LBP descriptor for
pedestrian detection, which can handle partial occlusions. Shotton
et al. [61] proposed an efficient fusing of contour and texture cues
based on the boosting algorithm for object recognition. Schwartz
et al. [62] presented an efficient descriptor for pedestrian detection
based on Partial Least Squares (PLS) analysis. Such a descriptor
includes the combination of gradient, texture and color information.
Alexe et al. [63] presented a generic objectness measure, which
combines in a Bayesian framework several image cues, such as color
contrast, edge density and multi-scale saliency. Recently, multiple
kernel learning method has attracted increasing interest within
researchers. Given multiple sources of information, one might
calculate multiple basis kernels, one for each source. In such cases,
the resultant kernel is often computed as a convex combination of
the basis kernels. Kembhavi et al. [64] proposed an Incremental
Multiple Kernel Learning (IMKL) approach for object recognition,
which combines the Pyramidal Histogram of Oriented Gradients
(PHOG) [65] and Geometric Blur [66] together. A feature detector and
descriptor evaluation in human action recognition is given in [67].

Recently, biological features also received a lot of attention such
as Enhanced Biologically Inspired Model (EBIM) [68] and Atten-
tional Regions (ARs) [69]. The biological features tried to mimic
human beings’ biological vision mechanism in order to achieve
robust recognition. Feature description, in general, is a vital
component of many visual research fields, such as visual tracking
or detection. Table 1 has summarized the recent advances on visual
descriptors. From the above categories, we can conclude that
tremendous progress has been made in this area. However, no
single feature descriptor is robust and efficient enough to deal with
all kinds of situations. For instance, the HOG descriptor focuses on
edges and structures, ignores flat areas, thus fails to deal with noisy
edge regions. A possible drawback of the LBP operator is that the
thresholding operation when comparing the neighboring pixels
could make it sensitive to noise. Color features represent the global
information of images, which are relatively independent of the
viewing angle, translation, and rotation of the objects and regions
of interest. However, objects with the same color histogram may
be completely different in texture, thus color histogram cannot
provide enough information. How to combine various kinds of
features into a coherent framework needs much more study.
Besides, deeper understanding of human vision principles would
also enormously benefits feature descriptor research.
3. Online learning based tracking methods

For visual tracking, handling appearance variations of a target
object is a fundamental and challenging task. In general, there are
two types of appearance variations: intrinsic and extrinsic. Pose
variation and/or shape deformation of a target object are con-
sidered as the intrinsic appearance variations while the extrinsic
variations are due to the changes resulting from different illumi-
nation, camera motion, camera viewpoint, and occlusion. These
variations can only be handled with adaptive methods which are
able to incrementally update their representations. Thus there is
an essential need for on-line algorithms that are able to learn
continuously. Generally, on-line algorithms can be divided into
two categories: Generative methods and Discriminative methods.

3.1. Generative online learning methods

Generative methods, which are used to learn the appearance of an
object, have been exploited to handle the variability of a target. The
object model is often updated online to adapt to appearance changes.
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Jepson et al. [70] developed an elaborate mixture model with
an online EM algorithm to explicitly model the appearance
changes during tracking. Zhou et al. [71] embedded appearance
adaptive models into a particle filter to achieve a robust visual
tracking. Lee and Kriegman [72] presented an online learning
algorithm to incrementally learn a generic appearance model
from the video. In Ross et al. [73], proposed a generalized visual
tracking framework based on the incremental image-as-vector
subspace learning method with a sample mean update. It is noted
that all the above tracking methods are unable to fully exploit the
spatial redundancies within the image ensembles. Consequently,
the focus has been made on developing the image-as-matrix
learning algorithm for effective subspace analysis. Li et al. [74]
employed a three-dimensional temporal tensor subspace learning
(ITPCA) for visual tracking. In [75], an incremental learning
algorithm is developed for the weighted tensor subspace (WTS)
to adapt to the appearance changes during tracking. However, the
appearance models adopted in the above mentioned tracking
approaches are usually sensitive to the variations in illumination,
viewpoint, and pose. This is because they lack a competent object
description criterion that captures both statistical and spatial
properties of object appearance. Motivated by the incremental
Principal Component Analysis algorithm (IPCA) [73], Yang et al.
[76] proposed an incremental PCA-HOG descriptor for visual hand
tracking. Based on the Covariance Matrix descriptor and the Log-
Euclidean Riemannian metric [77], Li et al. [78] presented an
online subspace learning algorithm which models the appearance
changes by incrementally learning an eigenspace representation
for each mode of the target through adaptively updating the
sample mean and eigenbasis. Considering the high computational
complexity, Wu et al. [79] presented a tracking approach that
incrementally learns a low-dimensional covariance tensor repre-
sentation, efficiently adapting online to appearance changes.

3.2. Discriminative online learning methods

Discriminative methods for classification have also been
exploited to handle appearance changes during visual tracking,
where a classifier is trained and updated online to distinguish the
object from the background. This method is also termed as tracking-

by-detection, in which a target object identified by the user in the
first frame is described by a set of features. A separate set of features
describes the background, and a binary classifier separates target
from background in successive frames. To handle appearance
changes, the classifier is updated incrementally over time. Motion
constraints restrict the space of boxes to be searched for the target.

Collins and Liu [80] proposed a method to adaptively select
color features that best discriminate the object from the current
background. Avidan [81] used an adaptive ensemble of classifiers
for visual tracking. Each weak classifier is a linear hyperplane in
an 11D feature space composed of R,G,B color and a histogram of
gradient orientations. In Wang et al. [82], proposed a tracking
algorithm based on online selecting discriminative features from
a large feature space with the Fisher discriminant method. In Li
et al. [83], proposed a novel tracking method based on incre-
mental 2D-LDA learning and Bayes inference. In Zhang et al. [84],
proposed a graph embedding based discriminative learning
method, in which the topology structures of graphs are carefully
designed to reflect the properties of the sample distributions. Tian
et al. [85] presented an online ensemble linear SVM tracker,
which makes good usage of history information during tracking.
Psychological and cognitive findings indicate that the human
perception is attentional and selective. Inspired by this theory,
Yang et al. [86] proposed a new visual tracking approach by
reflecting some aspects of spatial selective attention, and presents
a novel attentional visual tracking (AVT) algorithm. The algorithm
dynamically identifies a subset of discriminative attentional
regions through a discriminative learning on the historical data
on the fly. Recently, Grabner et al. [87,88] designed an online
boosting classifier that selects and maintains the best discrimi-
native features from a pool of feature candidates. Later, Saffari
et al. [89] proposed the online random forest (RF) algorithm based
on an online decision tree growing procedure. Compared with the
online boosting method [87,88], the RF method is more robust
against label noise. Wang et al. [90] proposed a beyond distance
measurement for video annotation. In [91], multi-graph learning
was used to unify video annotation.

Despite its high efficiency, online adaption faces one key
problem: Each update of the tracker may introduce an error
which, finally, can lead to tracking failure (Drifting Problem). In
order to deal with this problem, Grabner et al. [92] proposed a
semi-supervised approach where labeled examples come from
the first frame only, and subsequent training examples are left
unlabeled. Although this method is well suited for scenarios
where the object leaves the field of view completely, it is difficult
to decide the exact object locations in the first frame. Therefore,
Babenko et al. [93] proposed a novel tracking method based on
the online multiple instance learning method, which resolves the
uncertainties of where to take positive updates during tracking.
Motivated by the merits of both semi-supervised method [92] and
multiple instance learning method [93], Zeisl et al. [94] proposed
an online semi-supervised learning algorithm which is able to
combine both of these approaches into a coherent framework.
This leads to more robust results than applying both approaches
separately. More recently, Santner et al. [95] proposed a sophis-
ticated tracking system called PROST that achieves top perfor-
mance with a smart combination of three trackers: template
matching based on normalized cross correlation, mean shift
optical flow [96], and online random forests [89] to predict the
target location. Other representative methods to deal with the
Drifting Problem include [97,98]. In [97], classifiers with different
confidence thresholds were applied. In Breitenstein et al. [98],
proposed a multi-person tracking-by-detection algorithm with a
cascade detection confidence threshold mechanism, which aims
at avoiding the errors introduced by the online learning classifier.
Considering the causes behind Drifting Problem, the most direct
solution to it is to obtain accurate boundaries of the tracked
object. In Aeschliman et al. [99], proposed a novel probabilistic
framework for jointly solving segmentation and tracking, which
achieved significantly improvement in tracking robustness. In Yin
et al. [100], proposed a novel method to embed global shape
information into local graph links in a Conditional Random Field
(CRF) framework. Global shape information is an effective top-
down complement to bottom-up figure-ground segmentation as
well as a useful constraint to avoid drift during adaptive tracking.

Both the above generative methods and discriminative meth-
ods can be integrated into a multi-targets tracking framework.
Recently, numerous multi-targets tracking algorithms have been
proposed, which focused on resolving the data association pro-
blem. In Zhang et al. [101], proposed a network flow based
optimization method for data association needed for multiple
objects tracking. The optimal data association is formed by a min-
cost flow algorithm in the network. Yuan et al. [102] proposed a
learning-based hierarchical approach of multi-targets tracking by
progressively associating detection responses into the desired
target trajectories. Huang et al. [103] presented a detection-based
three-level hierarchical association approach to robustly track
multiple objects in crowded environments.

Table 2 has summarized the recent advances on online
learning tracking methods. A major shortcoming of discriminative
methods is their noise sensitivity, while generative methods would
easily fail within cluttered background. Recently, [104,105] have tried



Table 2
Recent advances on online learning tracking methods.

Category Representative Methods

Generative Method IPCA, ITPCA [67–76]

Discriminative Method OnlineRF, MILBoosting [77–93]

Combined Method [99,100]

Table 3
Recent advances on utilizing context information

for tracking.

Category Methods

Co-occurrence [101,105]

Spatio-temporal relation [102,106,107]

Knowledge [103,104]
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to combine these two methods and have achieved some progress. In
fact, how to combine the generative machine learning methods and
discriminative machine learning methods into a coherent framework
is a classic question within machine learning field and needs more
research. Besides, how to achieve a better balance between adaptivity
and stability when using online learning methods is still an open
problem.
4. Integration of context information

There is a broad agreement in the community on the valuable
role that context plays in any video analysis and image under-
standing applications. Numerous psychophysics studies have
shown the importance of context for human object recognition
and detection. Recently, researchers are trying to integrate con-
text information into the visual tracking framework and to
achieve great improvements.

In Yang et al. [106], presented a novel tracking algorithm by
integrating into the tracking process a set of auxiliary objects that
are automatically discovered in the video on the fly by data mining.
The collaborative tracking of these auxiliary objects leads to an
efficient computation as well as a high robustness. Yuan et al. [107]
addressed the problem of recognizing, localizing and tracking multi-
ple objects of different categories in meeting room videos. They
incorporated object-level spatio-temporal relationships into the
framework. The contextual relationships were modeled by a
dynamic Markov random field, in which recognition, localization
and tracking were done simultaneously. In Stalder et al. [108],
proposed a novel approach to increase the robustness of tracking-
by-detection algorithms through a cascaded confidence filter which
successively incorporates constraints on the size of the objects, on
the preponderance of the background and on the smoothness of
trajectories. Roth et al. [109] proposed a novel descriptor called
Classifier Grids, which exploited the local context to split the generic
detection task into easier sub-problems. Grabner et al. [110]
proposed a method to learn supporters which are useful for
determining the position of the object of interest, even when the
object is not seen directly or when it changes its appearance quickly
and significantly. In Kalal et al. [111,112], proposed robust visual
tracking algorithms based on the spatio-temporal constraints.

Objects are always embedded into certain context. Table 3 has
summarized the recent advances on integrating context information
for visual tracking. A recent detailed study of context can be found
in [113], which compared several kinds of context information
within the object detection area. How to efficiently integrate
contextual information into a tracking framework is a promising
direction for future visual tracking research.
5. Monte Carlo sampling

Visual tracking usually can be formulated as a graphical model
and involves a searching process for inferring the motion of an
object from uncertain and ambiguous observations. If the state
posterior density is a Gaussian, Kalman Filter [114], Extended
Kalman Filter [114] or Unscented Kalman Filter [115] can be used
to find the optimal/suboptimal solution. However, most real track-
ing problems are usually nonlinear and non-Guassian, and thus
Particle Filtering [12] is proposed to deal with this situation by
Monte Carlo simulation. The key idea of Particle Filtering is to
represent the required posterior density function by a set of random
samples with associated weights. The Markov Chain Monte Carlo
method is well applied to multi-object tracking problems while
rigorously formulating the entrance and exit of an object [116,117].

Although Particle Filtering has achieved considerable success in
tracking literature, it is faced with a fatal problem due to its
suboptimal sampling mechanism in the importance sampling process
and thus leads to the well-known sample impoverishment problem.
In Zhang et al. [118], proposed an improved unscented particle filter
algorithm by the singular value decomposition (SVD) based sigma
points calculation method. In [119], particles were generated from a
two-stage procedure: at the first stage, simulate the particles with
large predictive likelihoods; at the second stage, reweigh the particles
and draw the final states. In Zhang et al. [120], proposed a swarm
intelligence based particle filter algorithm with a hierarchical impor-
tance sampling process which is guided by the swarm intelligence
extracted from the particle configuration, and thus greatly overcome
the sample impoverishment problem suffered by particle filters. In
Kwon et al. [121], proposed a geometric method for visual tracking
with a geometrically defined optimal importance function, obtained
via Taylor expansion of a principal component analysis based
measurement function on the 2D affine group. Schindler et al. [122]
represented an object as the constellations of parts to accurately track
a bee with the Rao–Blackwellized Particle Filter with fixed topology of
the constellation. The cascade particle filter addresses tracking in low
frame rate videos [97]. In this approach, the detection algorithm is
well combined with particle filter to deal with abrupt motions. It
demonstrates efficiency in a face tracking case. In order to deal with
abrupt motion, Kwon and Lee [123] proposed a novel tracking
algorithm based on the Wang–Landau Monte Carlo (WLMC) sampling
method, which can alleviate the motion smoothness constraint
utilizing both the likelihood term and the density of states term.
The Basin Hopping Monte Carlo (BHMC) sampling method was
introduced in [124] to construct a novel tracking algorithm for the
target of which geometric appearance changes drastically over time.
The BHMC method efficiently reduces the computational complexity
and deals with the problem of getting trapped in local minima. A
great breakthrough of Monte Carlo sampling methods is [125], which
achieved high tracking robustness in extremely complicated scenar-
ios. The algorithm is based on a visual tracking decomposition
scheme. Specifically, the observation model is decomposed into
multiple basic observation models that are constructed by sparse
principal component analysis of a set of feature templates. The
motion model is also represented by the combination of multiple
basic motion models, each of which covers a different type of motion.

In recent years, numerous innovations have been made in the
Monte Carlo sampling based stochastic tracking area. Table 4 has
summarized the recent advances on Monte Carlo sampling
methods for visual tracking. A detailed description of Monte Carlo
sampling methods can be found in [126]. Compared with regular
exhaustive search-based methods, the main advantage of Monte
Carlo sampling methods is the reduction of sampling patches



Table 4
Recent advances on Monte Carlo sampling

methods.

Particle filter Markov chain Monte Carlo

methods

[92,113–117] [111,112,118–121]

Table 5
Comparison between well-known methods. P.: partial. M.: multi-feature.

System Domain Speed Rotation P. occlusion Drifting

TLD [94] Online Learning Fast Not Robust Not Robust Robust

CCF [108] M. fusion General Not Robust Robust Robust

TI [110] Context General Not Robust Robust Robust

VTD [125] Monte Carlo Slow Robust Robust Robust
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during tracking. Another benefit is that the sampling effort can be
kept constant, independent to the size of the object to track which
is not the case with simply expanding the search region around
the object with a fixed factor. Many state-of-the-art discrimina-
tive online learning based tracking methods [85,87–89,93] esti-
mated target’s position directly from exhaustive search-based
methods. It would be reasonable and inspiring to integrate these
methods into a stochastic inference framework.

6. Conclusion and future directions

Visual tracking is a kind of motion analysis at the object level,
which consists of two major components: object representation
and temporal filtering. In this paper, we survey the recent
progress on visual tracking, including feature descriptors, online
learning methods, integration of context information as well as
Monte Carlo sampling methods. One well-known system in each
domain is selected to show its performance, and the comparison
between them is given in Table 5.

Although various kinds of feature descriptors have been invented
in recent years, such as HOG, LBP and SURF, no single one is robust
and fast enough to deal with all tracking situations due to severe
appearance or motion changes. With the development of ensemble
machine learning methods like Boosting as well as multiple kernel
learning methods, a promising direction is combining various com-
plementary features such as contour and texture or multi-modal
sensory data like video information and audio information into a
coherent framework to capture both statistical and spatial properties.
Many research works have been done in this direction, such as the
classic cascaded boosted face detector [127] and multiple kernels for
object detection [128]. However, the selection of weak classifiers
within Boosting methods is still an open problem, poor weak
classifiers do not perform better than random guess, thus cannot
help decrease the training error during the Boosting process. A
promising direction is to discovery compositional features from a
given and possibly small feature pool based on data mining techni-
ques. On the other hand, multiple kernel learning methods (MKL)
often introduce complexity cost and thus result in quite a heavy
algorithm in both training and testing. To overcome it, efficient search
techniques such as cascaded method [127] and Efficient Subwindow
Search [129] can be integrated with MKL framework. Online learning
methods have been extensively studied for the last decade in the
visual tracking field. Many state-of-the-art algorithms have been
proposed to deal with complex situations during tracking. However,
the inherent Drifting Problem of online learning tracking methods
still needs more discussions. The existing methods such as semi-
supervised Boosting [92], multiple instance learning based Boosting
[93] as well as PROST [95], are all based on the ‘‘Anchoring
Mechanism’’, which is a general strategy for drift avoidance that
can make sure the interested objects do not stray too far from the
initial appearance models. Yet, these methods all suffer from the fixed
prior appearance model, which either can be too generic to drift to
the similar objects or too restrictive to fails in dramatic changes.

A promising solution is to construct an adaptive prior online
which can adapt to changes incrementally during tracking. Such an
adaptive prior can achieve a good balance between adaptivity and
stability. Considering the reason behind the Drifting Problem, new
advances on segmentation can also contribute directly to solve the
Drifting Problem. The drawback of this direction is that it is quite
difficult to obtain precise segmentation within complicated back-
ground. Moreover, current generative based online learning meth-
ods and discriminative based online learning methods are not
robust enough to operate in realistic scenarios. A promising direc-
tion is to combine the merits of both generative based online
learning methods and discriminative based online learning methods
into a coherent framework in order to achieve more robust results
than applying both approaches separately. Such a combination has
been a classic question within machine learning area. Besides, novel
findings from the Monte Carlo sampling community would also
greatly benefit the visual tracking research. Smarter Monte Carlo
sampling methods can greatly reduce the searching space thus
result in reduced computational complexity. Contextual information
has been widely studied in image and video understanding. While
only recently, contextual information has been exploited effectively
in visual tracking. In fact, many psychophysics studies have shown
the importance of context for human beings’ vision system. With the
advances of machine learning methods such as transfer learning
[130] and graphical models [131], contextual information will play
an increasingly important role in future visual tracking research.
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