
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

Supervised class-specific dictionary learning for sparse modeling
in action recognition

Haoran Wang a,b,n, Chunfeng Yuan b, Weiming Hu b, Changyin Sun a

a School of Automation, Southeast University, Nanjing, China
b National Laboratory of Pattern Recognition, Institute of Automation, CAS, Beijing, China

a r t i c l e i n f o

Article history:

Received 9 June 2011

Received in revised form

13 February 2012

Accepted 25 April 2012
Available online 4 May 2012

Keywords:

Compound feature

Motion segment

Sparse model

Supervised dictionary learning

Action recognition

a b s t r a c t

In this paper, we propose a new supervised classification method based on a modified sparse model for

action recognition. The main contributions are three-fold. First, a novel hierarchical descriptor is

presented for action representation. To capture spatial information about neighboring interest points, a

compound motion and appearance feature is proposed for the interest point at low level. Furthermore,

at high level, a continuous motion segment descriptor is presented to combine temporal ordering

information of motion. Second, we propose a modified sparse model which incorporates the similarity

constrained term and the dictionary incoherence term for classification. Our sparse model not only

captures the correlations between similar samples by sharing dictionary, but also encourages

dictionaries associated with different classes to be independent by the dictionary incoherence term.

The proposed sparse model targets classification, rather than pure reconstruction. Third, in the sparse

model, we adopt a specific dictionary for each action class. Moreover, a classification loss function is

proposed to optimize the class-specific dictionaries. Experiments validate that the proposed framework

obtains the performance comparable to the state-of-the-art.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years, a large number of approaches have been
proposed to fulfill action recognition. Among them, bag of visual
words approaches are greatly popular, due to their simple
implementation and good reliability. A video clip is summarized
by the histogram of its local features. By fully exploiting local
space–time features, the bag of visual words approaches are
robust to noise, occlusion and geometric variation, without
requiring reliable tracks on a particular subject. Recent work
has shown promising results using local space–time features
together with bag of visual words models. The methods in Refs.
[1–3] are classical interest-point-based methods for action recog-
nition. These approachs extract the local feature from a single
interest point, and achieve good results. However, the conven-
tional interest-point-based methods describe the feature of a
single interest point. They are mainly based on the individual
power of the interest point, and therefore do not consider the
spatio-temporal relationship between them. As an improvement,
Gilbert et al. [4] perform dense interest point detection, and
compute the distribution of interest points in a small area.

Although this approach utilizes some spatial information, it does
not exhibit the temporally ordering information in actions. A key
limitation of interest-point-based representation is failing to
capture adequate spatial or temporal information.

Sparse representation has received a lot of attention from the
signal processing community due in part to the fact that various
signals such as audio and natural images can be well approxi-
mated by a linear combination of a few elements of some
redundant bases, usually called dictionary. Recent publications
about sparse representation have shown that this approach is
very effective, leading to state-of-the-art results, e.g., in image
restoration, image denoising, texture classification and texture
synthesis. In the supervised or weakly supervised methods,
algorithms adopt features of the sparse coding of signals for
classification [5–9]. But the sparse models mainly consider mini-
mizing the reconstruction error. Little attention is paid to better
classification.

Recent research on dictionary learning for sparse coding has
been targeted on learning discriminative sparse models instead of
the purely reconstructive ones. Mairal et al. [10] generalize the
reconstructive sparse dictionary learning process by optimizing
the sparse reconstruction jointly with a linear prediction model.
Bradley and Bagnell [11] propose a novel differentiable sparse
prior rather than the conventional L1 norm, and employ a back
propagation procedure to train the dictionary for sparse coding in
order to minimize the training error. These approaches need to

Contents lists available at SciVerse ScienceDirect

journal homepage: www.elsevier.com/locate/pr

Pattern Recognition

0031-3203/$ - see front matter & 2012 Elsevier Ltd. All rights reserved.

http://dx.doi.org/10.1016/j.patcog.2012.04.024

� Corresponding author at: National Laboratory of Pattern Recognition, Institute

of Automation, CAS, Beijing, China. Tel.: þ86 136 93277219.

E-mail address: whr1fighting@gmail.com (H. Wang).

Pattern Recognition 45 (2012) 3902–3911



Author's personal copy

explicitly associate each sample with a label in order to perform
the supervised training. How to learn a discriminative dictionary
for both sparse data representation and classification is still an
open problem.

In this paper, we solve the three problems aforementioned and
present a novel framework for action recognition. Fig. 1 shows the
flowchart of our framework. We make the following three
contributions.

First, traditional interest-point-based representation only uti-
lizes features of a single interest point, and fails to capture
adequate spatial or temporal information. It is sensitive to the
noise. We consider that spatial and temporal information is very
important for action representation. So a novel hierarchical
descriptor is presented. The proposed compound appearance
and motion feature captures spatial information of neighboring
interest points. Furthermore, we propose a continuous motion
segment descriptor to represent human action by capturing the
temporal ordering information in actions. Spatial and temporal
context information is utilized for action representation.

Second, we propose a modified sparse model for classification.
Different from traditional sparse representation whose only task
is to minimize the reconstruction error, the proposed sparse
model targets at classification. Given K action classes, we learn
K class-specific dictionaries for representing the data, and then
classify the test sample into the class whose dictionary generates
the minimum reconstruction error. The similarity-constrained
term is utilized to project each descriptor into its local coordinate
system which captures the correlations between similar descrip-
tors by sharing bases. The dictionary incoherence term ensures
that samples from different classes are reconstructed by inde-
pendent dictionaries. Our proposed sparse model ensures samples
are best reconstructed by their own class specific dictionary.

Third, we introduce a classification loss function for the class-
specific dictionary learning. The dictionaries are trained by
minimizing the classification loss function. The test sample is
classified into the class whose dictionary generates the minimum
reconstruction error. The learned dictionaries are remarkably
more discriminative.

The remainder of this paper is organized as follows. Section 2
gives a review of related approaches for action representation and
sparse representation. Section 3 introduces the compound
appearance and motion feature and the continuous motion

segment descriptor. Section 4 presents a modified sparse model
and a supervised class-specific dictionary learning method for
classification. Section 5 demonstrates experimental results.
Section 6 concludes this paper.

2. Related work

Over the last few years, many methods for action recognition
have been presented and made impressive progress. Approaches
can be categorized on the basis of action representation. There
are appearance-based representation [13–15], shape-based repre-
sentation [16–18], optical-flow-based representation [19–21],
volume-based representation [22–24] and interest-point-based
representation [1–3]. A number of approaches adopt the bag of
space–time interest points [2] representation for human action
recognition. This representation can be combined with either
discriminative [1,25] classifiers, semi-latent topic models [26] or
unsupervised generative [3,27] models. Such holistic representa-
tion of video sequences does not capture adequate time ordering
and arrangement of features in the sequence. To represent actions
accurately, some researchers have studied the use of temporal
structures for recognizing human activities. Methods based on
dynamical Bayesian networks and Markov models improve the
performance but require either manual design by experts [28] or
detailed training data that are expensive to collect [29]. Other
work has aimed at constructing plausible temporal structures in
the actions of different agents but does not consider the temporal
composition within the movements of a single subject, due in part
to their holistic representation. On the other hand, discriminative
models of temporal context have also been applied to classifica-
tion of simple motions in rather simplified environments [30,31].

In recent years, sparse representation has received a lot of
attention. It approximates the input signal in terms of a sparse
linear combination of the given overcomplete bases in dictionary.
Such sparse representations are usually derived by linear pro-
gramming as an L1 norm minimization problem. Many efficient
algorithms have been proposed to capture sparse coding features
in the past several years [12,32]. A number of algorithms have
also been proposed to learn dictionaries for sparse representa-
tions of signals [32,33]. The sparse representation has been
successfully applied to many problems, e.g., image restoration
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Fig. 1. Flowchart of the proposed framework.
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[34], image denoising and also well applied to classification
tasks [6]. Wright et al. [35] consider the recognition problem as
one of finding a sparse representation of the test image in terms
of the training set as a whole, up to some sparse errors due to
occlusion. The algorithm achieves impressive results on public
datasets, but fails to handle practical face variations such as
alignment and pose. Others try to train a compact dictionary for
sparse coding, and the sparse representations of the signals are
used as image features trained latter with some classifiers [36].

3. Action representation

Traditional interest-point-based representation only describes
features of a single interest point, and fails to capture adequate
spatial or temporal information. So it is easily influenced by noise.
A novel hierarchical descriptor for action representation is intro-
duced in this section. We present a compound appearance and
motion feature, and then design a continuous motion segment
descriptor based on our compound features. The compound
feature considers the relationship between neighboring interest
points, and describes an area around the central interest point,
not a single interest point. It captures the spatial information, and
it is not sensitive to noise. Furthermore, the continuous motion
segment descriptor describes the time ordering information in
motion. Different from previous descriptors, our proposed hier-
archical descriptor incorporates more spatial and temporal infor-
mation. So it is more discriminative for action representation and
improves the performance of our framework.

3.1. Compound appearance and motion feature

We perform space–time interest point detection and their
associated local feature extraction. To detect interest points, the
method in [2] is adopted, which is a space–time extension of the
Harris operator. A multi-scale approach is adopted. For the initial
features, we use the histograms-of-optical-flow (HOF) and

histograms-of-oriented-gradients (HOG), which characterize the
motion and appearance within a volume surrounding the interest
point.

We specifically introduce the compound feature, which incor-
porates neighborhood information around the central interest
point. For a given space–time point, its N closest interest points
are collected, where the distance is measured by the normalized
Euclidean distance on its 3D position coordinates:

Dsðp,qÞ ¼
X3

i ¼ 1

1

si
ðpðiÞ�qðiÞÞ2

 !1=2

ð1Þ

where p¼(x1,y1,t1) and q¼(x2,y2,t2) record the spatial position
and the frame number of two interest points respectively. p(i) is
the ith dimension of vector p, and si is a weight that scales the x, y

or t dimension.
Let jðpÞ ¼ fp,q1,. . .,qN�1g denote the N nearest neighboring

interest points for the central interest point p. The compound
feature of the central point p is formed from the features of the
nearest neighboring points. The contribution that a neighboring
point makes to the central interest point is adaptive to the
distance between the central point and the neighboring point.
Therefore, the compound feature of the interest point p is defined
as follows:

Fp ¼ f pþ
XN�1

j ¼ 1

ojf qj
ð2Þ

oj ¼ a
1

Dsðp,qjÞ
ð3Þ

where Fp is the compound feature of the interest point p, fp is the
HOG and HOF features of interest point p, and f qj

is the HOG and
HOF features of the jth nearest interest point to the central
interest point, a is a parameter, and Ds(p,qj) is the distance
between the central point and the jth nearest neighboring interest
point. The neighborhood formation is shown in Fig. 2. Spatio-
temporal words are built by applying k-means clustering to
compound features of interest points. Each interest point is
assigned to a closest spatio-temporal word. Compared with
features of single interest point, the compound features adopt
information of neighboring points. So they describe features of a
larger area and they are more robust for action representation.

3.2. Continuous motion segment descriptor

Based on spatio-temporal words extracted from compound
appearance and motion features, a continuous motion segment
descriptor is proposed as shown in Fig. 3(a). The process includes
three steps. First, we compute the histogram of spatio-temporalFig. 2. The neighborhood formation of compound feature.

Fig. 3. Action representation: (a) shows the construction of our continuous motion segment descriptor: f0 is a histogram of spatio-temporal words over a segment of

motion and F0 is the concatenation of continuous motion segments. (b) Shows the action representation process of each action video.
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words over a temporal span to represent a motion segment
feature f0, similar to the traditional bag-of-features approach.
Second, we concatenate several continuous segment features as
our continuous motion segment descriptor F0 to capture temporal
context information, particularly the time ordering information in
the motion. The concatenation of continuous segment features
can represent a continuous motion process which is discrimina-
tive. Third, we assign a label to each continuous motion segment
descriptor F0 by applying k-means clustering to all the continuous
motion segment descriptors extracted from the video. We accu-
mulate the occurrences of each label in the video, so each video is
represented by a histogram vector. For example, we represent
continuous m frames as a motion segment and concatenate n

continuous motion segments as our descriptor. So the continuous
motion segment descriptor is extracted from continuous m �n

frames. From every continuous m �n frames in the video, we
extract a continuous motion segment descriptor. Also there is not
any manual annotation. Fig. 3(b) illustrates the action representa-
tion process of each action video.

The compound appearance and motion feature captures the
spatial information of neighboring interest points and our con-
tinuous motion segment descriptor makes use of the time order-
ing information in motion. Incorporating spatial and temporal
context information makes our descriptor more discriminative.

4. Sparse representation and dictionary learning

Sparse representation has been successfully applied to solve
some problems in computer vision, such as image restoration,
image denoising, texture synthesis and texture classification. In
this section, we propose a modified sparse representation for
action recognition.

Sparse representation means to represent a signal as a linear
combination of a few bases of a given dictionary. Mathematically,
given a signal xARn and a dictionary DARn� k, the sparse repre-
sentation problem is stated as mina99a990, s.t. x¼Da, where 99a990

is the L0 pseudo-norm of the coefficient vector aARk, the number
of non-zero elements. As minimizing L0 is NP-hard, a common
approximation is to replace it with the L1-norm. In the noisy case,
the equality constraint must be relaxed as well. An alternative
then is to solve the unconstrained problem

min
a

:x�Da:2

2þl:a:1 ð4Þ

where l is a parameter that balances the tradeoff between the
reconstruction error and the sparsity.

The only target of traditional sparse representation is to
minimize the reconstruction error, rather than consider classifi-
cation. As an improvement, each sample is locally approximated
by a linear combination of its nearby samples, and the linear
weights become its local coordinate coding in LCC [51] and LLC [12].
This method turns a difficult high dimensional nonlinear learning
problem into a simple linear learning problem. We consider that the
samples in different action classes have different features, so we
adopt the class-specific dictionary. In our method, the dictionary
incoherence term encourages dictionaries associated to different
classes to be independent. Similar samples use similar bases and

samples belonging to different classes use absolutely different bases.
The reconstruction error is minimized when samples are sparsely
represented by the bases in their own dictionaries. We incorporate
the similarity constrained term and the dictionary incoherence term.
Our proposed sparse representation algorithm is more effective for
classification.

For dictionary learning, we propose a classification loss func-
tion. The target is to improve the class specific dictionaries to
better reconstruct samples of their own classes than that of other
classes. To minimize the classification loss function, we optimize
the class specific dictionaries for more effective classification. The
optimization is carried out using an iterative approach that is
composed of two steps: the sparse representation step on a fixed
D and the dictionary update step on fixed a.

4.1. Sparse representation and classification

Let xj
i ,i¼ 1,. . .,K , j¼ 1,. . .,mi denotes a video representation in

class i as described in Section 3 and Bi is the corresponding
dictionary trained for class i. The proposed similarity-constrained
and dictionary-incoherence sparse model (SDSM) is computed as

min
fBi ,a

j
i
g
i¼ 1,. . .,K

j¼ 1,. . .,mi

XK

i ¼ 1

Xmi

j ¼ 1

ðJxj
i�Bia

j
iJ

2
2þlJdj

ia
j
iJ1ÞþZ

X
paq

JBT
pBqJ

2
F

8<
:

9=
;

ð5Þ

where ‘‘ � ’’ denotes the element-wise multiplication, and the
notation aj

i is the sparse code corresponding to the video descrip-
tor jA[1,y,mi] in class i. JBT

pBqJ
2
F denotes the dictionary incoher-

ence term. Jdj
ia

j
iJ1 is the similarity constrained term, and dj

i is the
similarity adapter that gives different freedom for each basis
vector proportional to its similarity to the input signal xj

i.
Specifically

dj
i ¼ exp

distðxj
i ,BiÞ

s

 !
ð6Þ

As in [12], distðxj
i ,BiÞ ¼ ½distðxj

i ,b1Þ,. . .,distðxj
i,bNÞ�

T , and distðxj
i,bnÞ

is the Euclidean distance between xj
i and bn. s is used for adjusting

the weight decay speed for the similarity adapter. Usually, we
further normalize dj

i to be between (0, 1] by subtracting
maxðdistðxj

i,BiÞÞ from distðxj
i,BiÞ.

The SDSM reconstruction error is

R̂ðxj
i ,BiÞ ¼ min

aj
i
,B1 ,...,BK

Jxj
i�Bia

j
iJ

2
2þlJdj

ia
j
iJ1þZ

X
paq

JBT
pBqJ

2
F ð7Þ

For classification, once the dictionaries have been learned, the
class i0 for a given new sample x is found by solving
i0 ¼ argmini ¼ 1,...,K R̂ðx,BiÞ.

Fig. 4 shows the comparison between standard sparse coding
(SC), locality-constrained linear coding (LLC) and our SDSM. For
SC, the bases are selected from all the samples. LLC only selects
bases similar to input. LLC code captures the correlations between
similar inputs. SDSM not only has the properties of LLC, but also
considers dictionary incoherence. The proposed sparse model
selects samples that can best represent their own action class as

Fig. 4. Comparison between SC, LLC and SDSM. x1 and x2 are two inputs from different classes.
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the bases of their class-specific dictionary. It does not select
samples similar to other classes as bases. In the training samples,
we compute the distance between the histogram representation
of a video and the center of each action class. In practice, there
may be complex background in some action videos. So the
histogram representations of these videos may be far from the
center of their own class, even they are close to the samples of
other classes. We call these action videos ‘‘noise’’. For this reason,
LLC may select samples of other classes as the bases because these
selected samples belonging to other classes are similar to the
noise. To overcome this problem, the dictionary incoherence term
in SDSM discards the noise samples and selects the samples,
which are more close to the center of their own action class than
that of other classes, as the bases of their class-specific dictionary,
further illustrated in Fig. 5. Different results are shown in bases
selection. Obviously, the bases selected by SDSM can better
represent their own action class and be more discriminative for
classification than that selected by LLC.

4.2. Supervised class-specific dictionary learning

To learn a discriminative sparse model instead of pure
reconstruction, we propose a supervised method to learn the
dictionaries fBig

K
i ¼ 1 of sparse representation. To evaluate the

effect of dictionaries for classification, we propose a classification
loss function:

EðfBig
K
i ¼ 1Þ ¼

XK

i ¼ 1

Xmi

j ¼ 1

R̂ðxj
i,BiÞ�

X
ka i

R̂ðxj
i,BkÞ

 !
ð8Þ

Minimizing EðfBig
K
i ¼ 1Þ over Bi, the learned class specific dic-

tionaries will better reconstruct samples of their own classes than
dictionaries of other classes, and therefore, be more discrimina-
tive for classification. The dictionaries optimization is carried out
using an iterative approach that is composed of two steps: the
sparse coding step on a fixed fBig

K
i ¼ 1 according to our SDSM

model and the dictionary update step on fixed aj
i. We elaborate

the class specific dictionary update step on fixed aj
i as follows:

@E

@B
¼
XK

i ¼ 1

Xmi

j ¼ 1

@ðR̂ðxj
i ,BiÞ�

P
ka iR̂ðx

j
i,BkÞÞ

@B

¼
Xk

i ¼ 1

Xmi

j ¼ 1

@R̂ðxj
i,BiÞ

@B
�

P
ka iR̂ðx

j
i ,BkÞ

@B

 !
ð9Þ

where B¼B1,B2,y,BK.

@R̂ðxj
i,BÞ

@Bmn
¼ lim

DBmn-0

R̂ðxj
i ,BþDBmnÞ�R̂ðxj

i ,BÞ

DBmn
ð10Þ

¼ lim
DBmn-0

:xj
i�ðBþDBmnÞ aj

iþ @aj
i=@Bmn

� �
DBmn

� �
:2

2�Jxj
i�Baj

iJ
2
2

DBmn
ð11Þ

where Bmn is the element of matrix B. Therefore, the problem is
reduced to compute the gradients of the sparse representation
vector aj

i with respect to the dictionaries fBig
K
i ¼ 1.

In order to establish the relationship between a sparse code aj
i

and Bi, we first find the fixed point equations by computing the
gradient with respect to aj

i on Eq. (7) at its minimum â:

@ðJxj
i�Bia

j
iJ

2
2Þ

@aj
i

�����
aj

i
¼ â

¼�l
@ðJdj

ia
j
iJ1Þ

@aj
i

�����
aj

i
¼ â

ð12Þ

leading to

2ðBT
i Bia

j
i�BT

i xj
iÞ9aj

i
¼ â
¼�ldj

i signðaj
iÞ9aj

i
¼ â

ð13Þ

where signðaj
iÞ is a vector function on each element of vector aj

i.

In Eq. (13), aj
i is not linked with Bi explicitly. To calculate the

gradient of aj
i with respect to Bi, we take derivative of Bi on both

sides of Eq. (13):

@f2ðBT
i Bia

j
i�BT

i xj
iÞg

@Bimn
¼
@f�ldj

i signðaj
iÞg

@Bimn
ð14Þ

The ‘‘sign’’ function on the right side does not continue at zero.
However, since the left side of Eq. (14) cannot be infinite,
@f�ldj

i signðaj
iÞg=@Bimn ¼ 0.

@f2ðBT
i Bia

j
i�BT

i xj
iÞg

@Bimn
¼ 0 ð15Þ

@aj
i

@Bimn
¼ ðBT

i BiÞ
�1 @BT

i aj
i

@Bimn
�
@BT

i Bi

@Bimn
aj

i

 !
ð16Þ

Substituting Eq. (16) into (11), @R̂ðxj
i,BÞ=@Bmn is solved. Then based

on Eq. (9), we get the gradient of classification loss E with respect to
dictionaries B1,B2,y,BK for the class specific dictionary update.

4.3. The process of SDSM classification

For each class, we first obtain bases of the dictionary Bi by
k-means clustering to all the training samples of class i for initializa-
tion. Second, we select bases from the initialization of dictionary Bi

through the proposed sparse model. To regard the similarity con-
strained term, we only keep the set of bases with large weights. To
regard the incoherence of different dictionaries, we discard the bases
which are far from the center of the bases in their own action class.
All the bases kept form the class-specific dictionary Bi. By the same
way, we obtain all the class specific dictionaries. Third, dictionaries
are updated by looping through all the training samples. The
classification loss function is minimized by gradient descent method.
Finally, for classification, the test sample is classified into the class
whose dictionary generates the minimum reconstruction error. The
process of SDSM classification is illustrated in Algorithm 1.

Algorithm 1. SDSM classification

Input: Binit ARQ�H , Binit AfB1,B2,. . .,BK g

Output: test video x0Aclass i0.
Dictionary learning:

B’Binit

for i¼1 to K do
for j¼1 to mi do

dj
i’H � 1 zero vector,

for m¼1 to H do

dj
im’exp�1ð�Jxj

i�bmJ
2=sÞ

end

dj
i’normalizeð0,1�ðd

j
iÞ

aj
i’arg min

a
Jxj

i�BaJ2
2þlJdj

iUaJ1

id’fp99aj
iðpÞ940:01g,Bi’Bð: ,idÞ

end
end

Fig. 5. The selected bases for class 1 are highlighted in blue. The two noise

samples and their neighbors from class 2 are selected as the bases of class 1 by

LLC. However, SDSM discards the noise successfully. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

H. Wang et al. / Pattern Recognition 45 (2012) 3902–39113906



Author's personal copy

for i¼1 to K

Ci ¼
PNi

j ¼ 1

Bið: ,jÞ=Ni, b is the number of bases in b.

end
if JBið: ,qÞ�Ci0a iJ2oJBið: ,qÞ�CiJ2

delete Bi(:,q),
end
for l¼1 to L do

for n¼1 to N do, N is the number of training samples.
for i¼1 to K do

DBi’
@E
@Bi
ðf rom Eq: ð8Þ to Eq: ð16ÞÞ

Bi’Bi�m DBi, m’
ffiffiffiffiffiffiffi
1=l

p
.

end
end

end
Classification:

Dictionaries (B1,B2,y,BK) have been learned.

i0 ¼ arg min
i ¼ 1,...,K

R̂ðx,BiÞ

5. Experiments

We evaluate our approach on three benchmark datasets for
human action recognition: the KTH actions dataset [49], the
Weizmann action recognition dataset [50], and the UCF Sports
dataset [43]. All the video clips contain primarily a single action of
interest. Examples of the datasets are shown in Fig. 6.

5.1. Parameters

We extract sparse Harris 3D points on the KTH and Weizmann
datasets, and perform dense and multi-scale interest point extrac-
tion on the UCF Sports dataset. For the compound appearance and
motion feature, we collect 6 nearest neighboring interest points.
To form spatio-temporal words, we empirically set k¼300 for the
vocabulary size of KTH and Weizmann datasets, k¼3000 for the
vocabulary of UCF Sports dataset. Motions in different datasets
have different temporal span. Even the motions in the same
dataset also have different temporal span. Through observing all
the motions in datasets, we find that some motions last for a short
time range from 20 to 30 frames such as box (KTH), handclap
(KTH) and pjump (Weizmann) and some motions last for a long
time range from 40 to 60 frames such as bend (Weizmann), lift
(UCF) and Golf Swing (UCF). In practice, we empirically represent
10 continuous frames as a motion segment and concatenate two
continuous motion segments as our descriptor. In sparse repre-
sentation, we use a penalty parameter l¼0.1, and set s¼100 for
the similarity adapter. In dictionary learning, we set the iteration
number L¼30. On the KTH dataset, there are about 80 bases in
each class-specific dictionary. The Weizmann dataset is small, and
contains videos with static camera and simple background. There
is almost no ‘‘noise’’ in this dataset. So we use all the training

samples in each action class as the bases in the class-specific
dictionary. On the UCF Sports dataset, the number of videos in
each action class is different. So the number of bases in each class-
specific dictionary is different. Because the dataset is not very
large, the number of bases in each class-specific dictionary is near
to the number of training samples in corresponding action class.

5.2. Experiments on the KTH dataset

The KTH action dataset contains six types of human actions
(boxing, hand waving, hand clapping, walking, jogging, and
running), performed repeatedly by 25 subjects in four different
scenarios: outdoors, outdoors with camera zoom, outdoors with
different clothes, and indoors. Twenty-four actors’ videos are used
as the training set and the remaining one person’s videos as the
testing set. The results are the average of 25 times runs.

Table 1 shows the average confusion matrix across all scenar-
ios. It is seen that our approach works excellently on most actions.
For example, the recognition accuracies for some actions are high
up to 97%, such as ‘‘box’’ and ‘‘hand clap’’. Fig. 7 illustrates that the
proposed compound appearance and motion feature improves the
performance of our framework. Traditional interest point based
methods only utilize features of single interest point. It can only
describe a very small area. So the accuracy can easily be influenced
by noise. The recognition rate is only 92.86%. However, the
proposed compound feature makes full use of the information of
neighboring interest points. It describes a larger area than single
interest point. Obviously, the compound appearance and motion
feature is more robust for action representation. The recognition
rate is raised to 94.17% when we collect six nearest neighboring
interest points to generate the compound feature. Table 2 shows
the contribution of the proposed hierarchical descriptor. Each of

Fig. 6. Representative frames from videos in three datasets: Row 1 are sampled

from KTH dataset, Row 2 are from Weizmann dataset, and Row 3 are from UCF

dataset.

Table 1
Confusion matrix on the KTH dataset.

Box Handclap Handwave Jog Run Walk

Box 0.97 0.02 0.00 0.00 0.01 0.00

Handclap 0.00 0.97 0.03 0.00 0.00 0.00

Handwave 0.02 0.02 0.96 0.00 0.00 0.00

Jog 0.00 0.00 0.00 0.90 0.06 0.04

Run 0.00 0.00 0.00 0.06 0.91 0.03

Walk 0.01 0.00 0.00 0.04 0.01 0.94

Fig. 7. Performance of compound feature.

Table 2
Contribution of proposed features.

Action feature Accuracy (%)

Traditional single interest feature 92.18

(A) Compound feature 93.19

(B) Continuous motion segment feature 92.69

AþB 94.17
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the proposed features offers more discriminative power than
traditional single interest point feature, and in combination our
hierarchical descriptor provides a richer representation than any
single proposed feature. The hierarchical descriptor achieves the
highest recognition rate. The compound feature incorporates
neighborhood spatial information and our continuous motion
segment descriptor captures the action temporal ordering infor-
mation. Experimental results validate that the proposed hierarch-
ical descriptor is effective for capturing the spatial and temporal
information which is important for action representation.

To prove the effectiveness of the proposed sparse model and the
class specific dictionary learning algorithm for classification, we
make comparisons with other classifiers. The results are shown in
Table 3. The performance of SVM is better than that of sparse
representation without dictionary learning (WDL), and our sparse
model with supervised dictionary learning (SDL) algorithm achieves
the best performance. The result of WDL is comparable with that of
SVM which is a powerful classifier. It proves that the proposed
sparse model based on class specific dictionaries is discriminative
for classification. The accuracy of SDL is higher than that of WDL and
SVM. It validates that our proposed dictionary learning method is
effective for boosting the recognition rate. We also compare the
accuracy of our sparse model with that without the dictionary
incoherence term (WDI). When we remove the dictionary incoher-
ence term, the accuracy of WDI is lower than that of SDL. It validates
that the dictionary incoherence term can improve the accuracy.
Comparing the results when different lambda is chosen in the sparse
model, the performance is robust as shown in Fig. 8. Experiments
show that our method achieves the state-of-the-art result on the
KTH dataset as shown in Table 4.

5.3. Experiments on the Weizmann dataset

In order to further validate the performance of our algorithm,
we also conducted experiments on the Weizmann dataset. The
Weizmann action dataset contains 10 actions (bend, jumping,
jack, jump forward, jump in place, jump sideways, skip, run, walk,
wave with two hands, and wave with one hand) performed by
9 different subjects. This dataset contains videos with static
cameras and simple background, but it provides a good test
environment to evaluate the performance of the algorithm when
the number of categories is larger compared with the KTH dataset
(a total of six categories). In each run, eight actors’ videos are used
as the training set and the remaining one person’s videos as the
testing set. So the results are the average of nine times runs.

Table 5 shows the average confusion matrix. The recognition
accuracies for some actions are high up to 100%. Table 6 illus-
trates the comparisons of two proposed features and their
combination. Each feature offers discriminative power, and in
combination our hierarchical descriptor provides a richer
representation that can boost recognition rate. Similar to the
performance on KTH dataset, our SDL method outperforms SVM
and WDL as shown in Table 7. When we remove the dictionary
incoherence term, the accuracy of WDI remains the same as that
of SDL. Videos on the Weizmann dataset have little noise with
static cameras and simple background. So the recognition rate is
higher than that of KTH, but there are still some confused actions
with small difference. Experiments show that our framework
leads to the results comparable to the state-of-the-art perfor-
mance as shown in Table 8.

5.4. Experiments on the UCF sports dataset

The authors of [43] have collected a large set of action clips
from various broadcast sport videos. The actions in this dataset
include diving, golf swinging, kicking, lifting, horseback riding,
running, skating, swinging a baseball bat, and pole vaulting. The
pole vaulting sequences were removed from the original database
due to copyright concerns. The videos on UCF sports dataset are
captured from much more camera views. Different from the
datasets above, the UCF Sports is a challenging dataset for action
recognition. The actions are featured in a wide range of scenes

Table 3
Effectiveness of supervised dictionary learning.

Box Handclap Handwave Jog Run Walk Average (%)

SVM 0.98 0.95 0.93 0.90 0.88 0.96 93.33
WDL 0.95 0.92 0.93 0.91 0.89 0.95 92.50
WDI 0.97 0.96 0.95 0.91 0.87 0.94 93.33
SDL 0.97 0.97 0.96 0.90 0.91 0.94 94.17

Fig. 8. The influence of lambda in the sparse model on recognition rate.

Table 4
Comparison with previous work on the KTH dataset.

Approach Year Accuracy (%)

Laptev et al. [1] 2008 91.80

Bregonzio et al. [38] 2009 93.17

Liu et al. [39] 2009 93.80

Gilbert et al. [40] 2009 94.50

Brendel and Todorovic [41] 2010 94.22

Kovashka et al. [53] 2010 94.53

Le et al. [42] 2011 93.90

Li et al. [54] 2011 93.60

Our method 94.17

Table 5
Confusion matrix on the Weizmann dataset.

Bend Jack Jump PJump Run Side Skip Walk Wave1 Wave2

Bend 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jack 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Jump 0.00 0.00 0.89 0.00 0.00 0.00 0.11 0.00 0.00 0.00

PJump 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00

Run 0.00 0.00 0.00 0.00 0.89 0.00 0.11 0.00 0.00 0.00

Side 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00

Skip 0.00 0.00 0.00 0.00 0.11 0.00 0.89 0.00 0.00 0.00

Walk 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Wave1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00

Wave2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 1.00

Table 6
Contribution of proposed features.

Action feature Accuracy (%)

Traditional single interest feature 94.5

(A) Compound feature 95.6

(B) Continuous motion segment feature 94.5

AþB 96.7
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and viewpoints. The dataset is tested in a leave-one-out manner,
cycling each example in as a test video one at a time.

Table 9 shows the average confusion matrix across all scenar-
ios. Table 10 illustrates the comparison of two proposed features
and their combination. As the experimental results on the
datasets above, the two proposed features are both discriminative
and in combination our hierarchical descriptor provides a richer
representation that can boost the recognition rate. However,
different from the results on KTH and Weizmann datasets,
Table 11 illustrates that the performances of WDL and SDL are
both better than that of SVM. The three methods use the same
video descriptor. WDL and SDL both adopt the proposed sparse
model for classification. So one possible reason is our sparse
model is more effective on this dataset. Though there are many
camera views for the same action, we only use the training
samples from similar camera views to reconstruct the test
sample. For example, as shown in Fig. 9, there are three action
classes. Actions in class 1 are captured from two different camera
views, and so are actions in class 2. Actions in class 3 are captured
from a single camera view. The test sample is best reconstructed
by the samples in action class 1 from camera view 1. So the test
sample is classified into action class 1. But maybe it is difficult to
find a separating surface to put all the videos belonging to the
same action class captured from different camera views in the
same class in SVM. So WDL and SDL both achieve better
performance than SVM on this dataset. The performance of WDI
is lower than that of SDL. It validates that the dictionary
incoherence term can improve the accuracy. The overall mean
accuracy we obtain on this dataset is 86.6%, which is comparable
to the state-of-the-art performance as shown in Table 12. Even in

the challenging and realistic action dataset, our method also
performs reliable recognition rate. It further indicates that the
proposed hierarchical descriptor is discriminative and our sparse
model is effective for classification.

6. Conclusions

In this paper, we have presented a novel method for action
representation based on compound features and continuous
motion segments. Our descriptor incorporates spatial and tem-
poral information which represents actions more accurately. We

Table 7
Effectiveness of supervised dictionary learning.

Bend Jack Jump PJump Run Side Skip Walk Wave1 Wave2 Average (%)

SVM 1.00 1.00 0.89 1.00 1.00 0.89 0.78 1.00 1.00 1.00 95.6
WDL 1.00 1.00 0.89 1.00 0.89 1.00 0.78 1.00 0.89 1.00 94.5
WDI 1.00 1.00 0.89 1.00 1.00 1.00 0.89 1.00 0.89 1.00 96.7
SDL 1.00 1.00 0.89 1.00 0.89 1.00 0.89 1.00 1.00 1.00 96.7

Table 8
Comparison with previous work on the Weizmann dataset.

Approach Year Accuracy (%)

Klaser et al. [46] 2008 84.3

Fathi and Mori [47] 2008 100

Bregonzio et al. [38] 2009 96.7

Ali and Shah [21] 2010 95.8

Seo and Milanfar [48] 2010 97.5

Our method 96.7

Table 9
Confusion matrix on the UCF Sports dataset.

Diving Golf

swing

Kick Lift Ride

horse

Run Skateboard Swing Walk

Diving 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Golf Swing 0.00 0.77 0.06 0.00 0.00 0.00 0.00 0.06 0.11

Kick 0.05 0.00 0.75 0.00 0.00 0.00 0.00 0.10 0.10

Lift 0.00 0.00 0.00 0.83 0.00 0.00 0.00 0.00 0.17

Ride Horse 0.00 0.00 0.08 0.00 0.84 0.00 0.00 0.00 0.08

Run 0.00 0.00 0.00 0.00 0.00 0.77 0.08 0.00 0.15

Skateboard 0.00 0.00 0.08 0.00 0.00 0.00 0.92 0.00 0.00

Swing 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.94 0.00

Walk 0.00 0.05 0.00 0.00 0.00 0.05 0.00 0.00 0.90

Table 10
Contribution of proposed features.

Action feature Accuracy (%)

Traditional single interest feature 79.3

(A) Compound feature 81.3

(B)Continuous motion segment feature 82.7

AþB 86.6

Table 11
Effectiveness of supervised dictionary learning.

Diving Golf

swing

Kick Lift Ride

horse

Run Skate

board

Swing Walk Average
(%)

SVM 1.00 0.67 0.70 0.67 0.68 0.70 0.76 0.88 0.85 78.0
WDL 1.00 0.72 0.65 0.83 0.68 0.77 0.84 0.85 0.85 80.0
WDI 1.00 0.72 0.70 0.83 0.76 0.77 0.84 0.91 0.90 83.3
SDL 1.00 0.77 0.75 0.83 0.84 0.77 0.92 0.94 0.90 86.6

Fig. 9. The test sample is best reconstructed by samples in the same action class

from similar camera view.

Table 12
Comparison with previous work on the UCF Sports dataset.

Approach Year Accuracy (%)

Rodriguez et al. [43] 2008 69.2

Yeffet and Wolf [44] 2009 79.2

Wang et al. [45] 2009 85.6

Yao et al. [52] 2010 86.6

Kovashka and Grauman [53] 2010 87.3

Le et al. [42] 2011 86.5

Our method 86.6
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have also introduced a supervised classification based on class
specific sparse representation and dictionary learning. We have
proposed a classification loss function for the class specific
dictionary learning as well. Our framework achieves comparable
performance on the datasets above. The experiments have vali-
dated that our proposed hierarchical descriptor is discriminative,
and the proposed sparse model incorporating supervised diction-
ary learning is effective for classification.
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