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Sparse subspace learning has drawn more and more attentions recently. However, most of the sparse

subspace learning methods are unsupervised and unsuitable for classification tasks. In this paper, a new

sparse subspace learning algorithm called discriminant sparse neighborhood preserving embedding

(DSNPE) is proposed by adding the discriminant information into sparse neighborhood preserving

embedding (SNPE). DSNPE not only preserves the sparse reconstructive relationship of SNPE, but also

sufficiently utilizes the global discriminant structures from the following two aspects: (1) maximum

margin criterion (MMC) is added into the objective function of DSNPE; (2) only the training samples

with the same label as the current sample are used to compute the sparse reconstructive relationship.

Extensive experiments on three face image datasets (Yale, Extended Yale B and AR) demonstrate the

effectiveness of the proposed DSNPE method.

& 2012 Elsevier Ltd. All rights reserved.
1. Introduction

In the past two decades, appearance-based face recognition has
attracted considerable interests in computer vision and pattern
recognition [1,2]. It is well known that the dimension of face images
is usually very high. For example, a 100-by-100 pixel face image can
be viewed as a 10,000-dimensional vector. High dimensionality of
feature vector has become a critical problem in practical pattern
recognition applications. The data in the high-dimensional space is
usually redundant and may degrade the performance of pattern
classifiers when the number of training samples is much smaller
than the dimensionality of the input data. A common way to solve
these problems is to adopt dimensionality reduction methods. So
far, an enormous volume of literature has been devoted to inves-
tigate various data-dependent dimensionality reduction methods
for projecting the high-dimensional data into low-dimensional
feature spaces. These traditional dimensionality reduction methods
can be classified into four categories as follows.

The first category is linear dimensionality reduction algorithm
(also named as subspace learning algorithm), among which
principal component analysis (PCA) and linear discriminant
ll rights reserved.
analysis (LDA) are two of the most popular ones [2,3]. Generally,
PCA projects the original data into a low-dimensional space which
is spanned by the eigenvectors associated with the largest
eigenvalues of the covariance matrix of all the data points.
However, PCA does not take into consideration the label informa-
tion of the input data. As a result, PCA will probably lose much
useful information which is critical for pattern classification
tasks [4]. Unlike PCA, LDA is a supervised method which takes
full consideration of the class labels for patterns. It is generally
believed that the class information can make the recognition
algorithm more discriminative. Thus, LDA has been shown to be
more effective than PCA in many applications. One limitation of
PCA and LDA is that they only exploit the linear global Euclidean
structure. Recent research shows that the face images may reside
on a nonlinear submanifold [5,6], which makes PCA and LDA
inefficient. In order to overcome the problem, many nonlinear
feature extraction methods such as kernel-based approaches and
manifold learning-based ones have been developed.

The second category is the kernel-based algorithm [7,8], which
uses a linear classifier algorithm to solve non-linear problems by
mapping the original non-linear observations into a higher-
dimensional space. It is based on the assumption that the non-
linear structure data will be linearly separable in the kernel space.
The most popular kernel methods are kernel principal component
analysis (KPCA) [8] and kernel Fisher discriminant analysis (KFDA)
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[7], which are the kernel versions of PCA and LDA. KPCA and KFDA
have been proved to be effective in some real world applications.
However, the choice of the kernel, which is crucial to the success
of these algorithms, has been traditionally entirely left to the user.
So many research works are conducted on multiple kernel learn-
ing to solve the problem of kernel determination [9].

The third category is manifold learning-based algorithm, which
is based on the idea that the data points are actually samples from a
low-dimensional manifold that is embedded in a high-dimensional
space. The representative algorithms include locally linear embed-
ding (LLE) [5], isometric feature mapping (ISOMAP) [10], Laplacian
eigenmaps (LE) [11], Hessian-based locally linear embedding (HLLE)
[12], maximum variance unfolding (MVU) [13,14], local tangent
space alignment (LTSA) [15,16], Riemannian manifold learning
(RML) [17,18], and local spline embedding (LSE) [19], etc. Each
manifold learning algorithm attempts to preserve a different
geometrical property of the underlying manifold. Local approaches
such as LLE and LE, the first step of which is graph construction
based on k-nearest-neighbor and e-ball based methods, aim to
preserve the locality proximity relationship among the data, while
global approaches like ISOMAP aim to preserve the metrics at all
scales. These nonlinear methods do yield impressive results on
some benchmark artificial and real world data sets due to their
nonlinear nature, geometric intuition, and computational feasibility.
However, all these manifold learning algorithms have the out of
sample problem [20]. The reason is that they can only yield an
embedding of the training data set. Nevertheless, when applied to a
new sample, they cannot easily find the sample’s image in the
embedding space by utilizing the low-dimensional embedding
results of the training data set because of the implicitness of the
nonlinear map. Thus a dozen of methods have been proposed to
solve this problem, e.g., incremental manifold learning [21], low-
rank matrix approximation [22], locality preserving projections
(LPP) [23], discriminant locality preserving projections based on
maximum margin criterion (DLPP/MMC) [24], null space discrimi-
nant locality preserving projections (NDLPP) [25], locality preser-
ving discriminant projections (LPDP), etc. [26].

The last one is matrix and tensor embedding algorithm [27,28]
which represents patterns as matrixes or high-order tensors
instead of vectors. The aforementioned subspace learning algo-
rithms, kernel based algorithm and manifold learning-based
algorithm all consider a vector representation of samples. How-
ever, the extracted features from many real world vision pro-
blems may contain higher-order structure. For example, a
captured image is a second-order tensor, i.e., a matrix, and
sequential data such as video sequences for event analysis is in
the form of a third-order tensor. Thus it is necessary to derive the
multilinear forms of these traditional linear feature extraction
methods to handle the data as tensors directly. Recently this
research field has received a lot of attention from the image
processing and computer vision community, and these methods
[28–34] have been shown to be much more efficient than the
traditional vector-based methods.

Recently, some new methods integrating the theory of sparse
representation, compressed sensing and subspace learning (linear
dimensionality reduction methods) have been proposed, and have
been successfully applied in many practical applications [35–37,
61, 62]. Sparse subspace learning (SSL) [38] is a special family of
dimensionality reduction methods which consider ‘‘sparsity’’. It
has either of the following two characteristics: (1) finding a
subspace spanned by sparse base vectors. The sparsity is enforced
on the projection vectors and associated with the feature dimen-
sion. The representative methods include sparse principal com-
ponent analysis (SPCA) [39], sparse nonnegative matrix
factorization [36], and nonnegative sparse PCA [40], etc. (2) Aim-
ing at the sparse reconstructive weight which is associated with
the sample size. The representative methods include sparse
neighborhood preserving embedding (SNPE) [41]. In fact, SNPE
is identical to sparsity preserving projections (SPP) [42], which
has achieved higher recognition rates than PCA and neighborhood
preserving embedding (NPE) for face recognition. Zhang et al. [43]
proposed a sparse representation-based classifier (SRC) [35]
oriented unsupervised dimensionality reduction algorithm which
combines SRC and PCA in its objective function. Yang and Chu
[44] proposed the SRC steered discriminative projection (SRC-DP).
The basic idea of SRC-DP is to seek a linear transformation such
that in the transformed low-dimensional space, the within-class
reconstruction residual is as small as possible and simultaneously
the between-class reconstruction residual is as large as possible.

However, SNPE suffers from a limitation that it does not encode
discriminant information, which is very important for recognition
tasks. In this paper, we propose a discriminant sparse neighbor-
hood preserving embedding (DSNPE) algorithm by combining
SNPE and maximum margin criterion (MMC) methods, which
can be viewed as a new algorithm integrating Fisher criterion
and sparsity criterion. It is well known that MMC is a method
proposed to maximize the trace of the difference of the between-
class scatter matrix and within-class scatter matrix from which
LDA can be derived by incorporating some constraints. Thus,
DSNPE is proposed by introducing MMC into the objective func-
tion of SNPE, which has two advantages: (1) it retains the sparsity
characteristic of SNPE; (2) it emphasizes the discriminative infor-
mation by incorporating MMC, which can make the class mean
vectors have a wide spread and make every class scatter in a small
space. Furthermore, to further increase the discriminative power
of DSNPE, we integrate additional discriminant information. More
concretely, to compute the sparse reconstructive relationship, we
only use the training samples with the same label as the current
sample instead of using all of the training samples. The reason
behind this decision is based on the following observation: taking
face images into account, the most compact expression of a certain
face image is generally given by the face images from the same
class [35]. The proposed method is applied to face biometrics and
is examined using the Yale, Extended Yale B, and AR face image
databases. Experimental results show that it is more suitable for
recognition tasks than SNPE.

The remainder of this paper is organized as follows: In Section 2
we will introduce our DSNPE method in details. A theoretical
analysis of DSNPE is given in Section 3. The experimental results
for applying our method to face recognition will be presented in
Section 4, followed by the conclusions in Section 5.
2. Discriminant sparse neighborhood preserving embedding
(DSNPE)

2.1. Graph construction based on sparse representation

Instead of considering k-nearest-neighbor and e-ball based
methods as in typical graph construction, we attempt to auto-
matically construct a graph G and make it well preserve the
discriminative information based on sparse representation (SR).
In the past few years, SR has received a great deal of attentions,
which was initially proposed as an extension of traditional signal
processing methods such as Fourier and wavelet. The problem
solved by sparse representation is to search for the most compact
representation of a signal in terms of linear combination of
patterns in an over-complete dictionary. SR has been successfully
used in image super-resolution [45,46], image denoising [47–49],
signal reconstruction [50], signal recovery [51], etc.

SR has compact mathematical expression. Given a signal (or an
image with vector pattern) xARD, and a matrix X¼[x1,x2,y,xn]ARn�D
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containing the elements of an over-complete dictionary [52] in its
columns, the goal of SR is to represent x using as few entries of X as
possible. The objective function can be described as follows:

min
si

JsiJ0

s:t: xi ¼ Xsi ð1Þ

or

min
si

JsiJ0

s:t: Jxi�XsiJ!e ð2Þ

where si¼[si,1,y,si,i�1,0,si,iþ1,y,sin]T is an n-dimensional vector in
which the ith element is equal to zero (implying that the xi is
removed from X), and the elements si,j,jai denote the contribution of
each xj to reconstructing xi. Unfortunately, this criterion is not convex,
and finding the sparsest solution of Eq. (1) is NP-hard. This difficulty
can be bypassed by convexizing the problem and using l1 instead of l0.
The l1 minimization problem can be solved by LASSO [53] or LARS
[54]. After repeating l1 minimization problem to all the points, the
sparse weight matrix can be expressed as S¼[s1,y,sn]T. Then, the new
constructed graph is G¼{X,S}, where X is the training sample set and
S is the edge weight matrix.

In the following, we give two reasons why SR is more suitable
to graph construction than k-nearest-neighbor and e-ball based
methods.
(1)
Tabl
Disc

In

Ou
1.

2.

3.
Parameter-free. SR does not need to determine the model
parameters such as the neighborhood size k of k-nearest-
neighbor and e of e-ball based methods, which are generally
difficult to set in practice. In contrast, the advantage of being
parameter-free makes SR easy to use in practice. In fact, the
data distribution probability may vary greatly at different areas
of the data space, which results in distinctive neighborhood
structure for each instance. However, both k-nearest-neighbor
and e-ball based methods use a predefined parameter to
determine the neighborhoods for all the data. It seems to be
unreasonable that all data points share the same parameter for
k-nearest-neighbor and e-ball based methods, which may not
characterize the manifold structure well, especially in under
sampling case. Obviously, compared to k-nearest-neighbor and
e-ball based methods, SR has the merit of being parameter-free.
(2)
 Robustness to data noise. The data noise is inevitable especially
for visual data, and the robustness is a desirable property for a
satisfying graph construction method. The graph constructed
by k-nearest-neighbor and e-ball based methods is based on
pair-wise Euclidean distance, which is very sensitive to data
noise. It means that the graph structure is easy to change
when unfavorable noise comes in. However, SR has been
shown to be robust to data noise in [35].
e 1
riminant sparse neighborhood preserving embedding.

put: training set X ¼ fðxi ,yiÞg
N
i ¼ 1

tput: D� d feature matrix w extracted from X

Project the image set {xi} into the PCA subspace by throwing away the

smallest principal components

Construct weight matrix S using Eqs. (15) or (16)

Perform eigenvalue decomposition using Eq. (20), construct D� d feature

matrix w whose columns consist of the eigenvectors corresponding to its d

smallest eigenvalues.

Fig. 1. Eleven cropped and resized sample
2.2. Sparse neighborhood preserving embedding (SNPE)

In [41,42], the objective function of SNPE is defined as

min
Xn

i ¼ 1

JwT xi�wT XsiJ
2

ð3Þ

where w is the projection matrix. By some simple algebra formula-
tions (see the appendix), the objective function can be reduced to

Xn

i ¼ 1

JwT xi�wT XsiJ
2
¼wT XðI�S�ST

þST SÞXT w ð4Þ

For compact expression, the objective function can be further
transformed to an equivalent form as follows:

Xn

i ¼ 1

JwT xi�wT XsiJ
2
¼wT XðI�S�ST

þST SÞXT w¼wT XSaXT w ð5Þ

where Sa¼ I�S�ST
þSTS

In addition, to avoid degenerate solutions, a constraint is
added

wT XXT w¼ I ð6Þ

Therefore, the minimization problem is reduced to

arg minwT XSaXT w

s:t: wT XXT w¼ I ð7Þ

Therefore, the transformation matrix that minimizes the
objective functions is given by the minimum eigenvalues solution
to the generalized eigenvalues problem

XSaXT w¼ lXXT w ð8Þ

It is easy to show that the matrices XSaXT and XXT are
symmetric and positive semidefinite. The vectors wi that mini-
mize the objective function are given by minimum eigenvalues
solutions to the generalized eigenvalues problem. Let the column
vectors w0,w1,y,wd�1 be the solutions of Eq. (8), ordered accord-
ing to their eigenvalues, l0,l1,y,ld�1.Thus, the embedding is
written as follows:

xi-yi ¼wT xi, w¼ ½w0,w1,. . .,wd�1� ð9Þ

where yi is a d-dimensional vector, and w is a D� d matrix.

2.3. Maximizing margin criterion (MMC)

Maximum margin criterion (MMC) [55,56] is proposed to max-
imize the (average) margin between classes after dimensionality
reduction. MMC can represent class separability better than PCA.
Furthermore, LDA can be derived from MMC by incorporating some
constraints. However, MMC does not suffer from the small sample
size problem, which is known to cause serious stability problems
for LDA.

In [55,56], the objective function of MMC is written as

J1 ¼max
X

ij

pipjðdðmi,mjÞ�sðmiÞ�sðmjÞÞ

8<
:

9=
; ð10Þ

where pi and pj are the prior probability of class i and class j,
mi and mj are the mean vectors of class i and class j. Here d(mi,mj),
s(mi), and s(mj) are defined as

dðmi,mjÞ ¼ Jmi�mjJ ð11Þ
s of one person in Yale face database.
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sðmiÞ ¼ trðSiÞ ð12Þ

sðmjÞ ¼ trðSjÞ ð13Þ

where Sj is the covariance matrix of class j.
Thus the optimized function can be derived as follows:

J2 ¼maxtrðSb�SwÞ ð14Þ

The matrix Sb is called the between-class scatter matrix and Sw

is called the within-class scatter matrix.

2.4. Discriminant sparse neighborhood preserving embedding

(DSNPE)

In this section, we will discuss the solution of DSNPE. Inspired
by the observation that the most compact expression of a certain
face image is generally given by the face images from the same
class [35], we modify the original sparse representation as

min
si

JsiJ1

s:t: xi ¼ Xksi labelðxiÞ ¼ k ð15Þ

or

min
si

:si:1

s:t: Jxi�XksiJ!e labelðxiÞ ¼ k ð16Þ

where Xk denote the set of training samples whose label is the
same as xi. That is to say, to compute the sparse reconstructive
relationship, we only use the training samples with the same
label as the current sample instead of using all of the training
samples.

Furthermore, if a linear transformation Y¼wTX can maximize
J2, an optimal subspace for pattern classification will be explored.
This is because the linear transformation aims to project a pattern
closer to patterns in the same class but farther from those in
different classes, which is exactly the goal for classification. That
is to say, to find an optimal linear subspace for classification
Fig. 2. Top 10 Eigenfaces, Fisherfaces, DSNPE1faces and DSNPE2faces of Yale

dataset.

Table 2
The maximal average recognition rates (percent) across 20 runs on the Yale databa

parentheses).

Method 2 Train 3 Train 4 Train 5 Tra

Baseline 42.6373.79(1024) 48.0874.28(1024) 52.8674.19(1024) 55.44

PCA 42.6373.79(29) 48.0874.28(44) 52.8674.19(59) 55.44

LPP 57.1975.51(14) 67.9274.25(14) 75.1475.46(16) 77.22

NDLPP 56.1175.28(14) 69.7073.66(14) 77.4774.60(14) 81.77

LPDP 56.7475.90(14) 71.7574.50(14) 78.9073.86(16) 81.78

DLPP/MMC 58.1975.85(14) 70.0874.4(15) 78.1474.28(14) 83.56

LDA 45.1975.10(10) 59.4274.62(13) 68.9575.87(13) 74.89

SNPE1 66.7774.16(27) 69.9572.30(41) 73.6172.99(55) 74.27

SNPE2 66.1474.48(28) 70.2973.64(43) 73.5773.71(56) 73.77

DSNPE1 72.3375.86(29) 82.3373.58(44) 86.8572.90(59) 90.61
DSNPE2 72.4076.38(29) 80.7073.76(44) 86.6673.12(59) 89.88
means to maximize the following optimized function:

J3 ¼maxtrðwT ðSb�SwÞwÞ ð17Þ

If the linear transformation obtained by SNPE can satisfy J3

simultaneously, the discriminability of the data will be improved
greatly. Thus the solution for DSNPE can be represented as the
following multi-object optimization problem:

mintrðwT XSaXT wÞ

maxtrðwT ðSb�SwÞwÞ

(

s:t: wT XXT w¼ I ð18Þ

The solution to the constrained multi-object optimization
problem is to find a subspace which preserves the sparsity
property and maximizes the margin between different classes
simultaneously, so it can be changed into the following con-
strained problem:

min trðwT ðXSaXT
�gðSb�SwÞÞwÞ

s:t: wT XXT w¼ I ð19Þ

where g is a parameter to balance the sparsity and the discrimi-
nant information.

Eq. (19) can be solved by Lagrangian multiplier method:

@

@w
trðwT ðXSaXT

�gðSb�SwÞÞw�liðw
T XXT w�IÞÞ ¼ 0

where li is the Lagrangian multiplier. Then, we can get

ðXSaXT
�gðSb�SwÞÞwi ¼ liXXT wi ð20Þ

where wi is the generalized eigenvector of XSaXT
�g(Sb�Sw) and

XXT; li is the corresponding eigenvalue.
Let the column vectors w0,w1,y,wd�1 be the solutions of

Eq. (20), ordered according to their first d smallest eigenvalues
l0,l1,y,ld�1. Thus, the embedding is written as follows:

xi-yi ¼wT xi, w¼ ½w0,w1,. . .,wd�1�

where yi is a d-dimensional vector and w is a D�d matrix.
The main procedure for the discriminant sparse neighborhood

preserving embedding algorithm is summarized in Table 1.

2.5. Time complexity analysis

In this section, we theoretically analyze the time complexity of
our algorithm. We omit the time complexity analysis of sparse
learning, because there are a number of software packages to
realize the algorithm of sparse learning and different package has
different time complexities. For convenience, we give a notation
that the number of principal components in the PCA step of
DSNPE is q. The DSNPE contains the PCA step and the eigende-
composition step using Eq. (20). Since the PCA step of DSNPE is
se and the corresponding standard deviations (std) and dimensions (shown in

in 6 Train 7 Train 8 Train

73.86(1024) 58.8075.28(1024) 59.6775.29(1024) 63.4475.47(1024)

73.86(74) 59.1375.29(30) 59.8376.14(33) 64.3375.70(50)

73.50(14) 81.674.94(14) 82.2574.69(14) 84.1175.21(15)

73.71(14) 84.6073.83(14) 87.4173.91(14) 89.8873.70(14)

73.75(13) 86.7373.95(14) 88.1773.24(14) 90.6772.35(14)

74.17(18) 85.5373.76(16) 88.3373.94(14) 89.5674.17(18)

73.52(14) 79.2774.69(14) 79.8376.73(13) 83.2275.51(14)

73.71(74) 77.8674.82(85) 76.9176.19(101) 79.3376.95(114)

75.26(67) 7875.0910(86) 77.4175.81(96) 81.4476.04(110)

72.98(74) 93.6072.65(89) 93.4173.17(104) 96.0073.10(119)
72.76(74) 9272.59(89) 92.5874.02(104) 9573.13(119)
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Fig. 3. Recognition accuracy vs. dimensionality on Yale database with 2,3,4,5,6,7,8 images for each individual randomly selected for training.

Fig. 4. Thirty two cropped and resized samples of one person in Extended Yale B face database.
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the same as the one often used in the other algorithms such as the
classical LDA (i.e., PCAþLDA) and LPP, we focus on the time
complexity of the eigendecomposition step using Eq. (20), which
is o(q3). Hence, the time complexity of DSNPE is o(q3).
3. Theoretical analysis of DSNPE

In this section, we give some theoretical analyses to better
reveal the characteristic of DSNPE. At first, a lemma is presented
as follows:

Lemma 1. [57]. For symmetric matrix AARn�n , EARn�n , let

A¼QLQT be the eigen-decomposition of A and AþE¼B¼PL1PT be

the eigen-decomposition of B. Write Q¼[q1,q2,y,qn], P¼[p1,p2,y,

pn], where qi and pi are the normalized eigenvectors of A and B,

respectively. Let y denote the acute angle between qi and pi, then

sinðyÞraJEJ2

where a is a constant that only depends on A.
Table 3
The maximal average recognition rates (percent) across 20 runs on the Extended

Yale B database and the corresponding standard deviations (std) and dimensions

(shown in parentheses).

Methods 5 Train 10 Train

Baseline 36.5571.54 53.4370.82

PCA 36.5571.55(188) 53.4370.82(372)

LPP 59.1472.58(189) 69.4072.16(379)

LDA 75.1471.78(37) 87.22 71.09(37)

NDLPP 77.2871.84(37) 87.6671.08(37)

LPDP 73.7771.90(155) 87.9670.73(197)

DLPP/MMC 73.6671.86(41) 87.6571.05(74)

SNPE1 77.2471.84(189) 82.6972.28(379)

SNPE2 75.5871.6701(189) 84.5471.26(379)

DSNPE1 79.2071.85(189) 88.1770.85(379)
DSNPE2 77.6771.86(189) 86.9571.35(379)
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Fig. 5. Recognition accuracy vs. dimensionality on Extended Yale B databas
The following Theorem 1 characterizes the solution of DSNPE
when the parameter g is approaching infinity. Note that Theorem
1 requires the positive definiteness of XXT, which always holds for
our algorithm since we use PCA to preprocess the data. Without
loss of generality, we further assume the data matrix X has been
centered.

Theorem 1. When g-N, the wi obtained by the proposed DSNPE

method converges to the generalized eigenvector mi of the between-

class scatter matrix Sb and the within-class scatter matrix Sw, i.e.,

when g-N, there exists a constant b such that

wi�bmi ¼ 0

Proof. If the both sides of Eq. (20) are divided by g, we have

1

g
XSaXT

�ðSb�SwÞ

� �
wi ¼

li

g
XXT wi ð21Þ

Eq. (21) is equivalent to

ðXXT
Þ
�0:5 1

g XSaXT
�ðSb�SwÞ

� �
ðXXT
Þ
�0:5
ðXXT
Þ
0:5wi ¼

li

g ðXXT
Þ
0:5wi

ð22Þ

Therefore (XXT)0.5wi is the eigenvector of (XXT)�0.5((1/g)XSaXT
�

(Sb�Sw))(XXT)�0.5.

On the other hand, from the definition of mi, we obtain

Sbmi ¼ ciSwmi ð23Þ

where ci is the corresponding eigenvalue of mi.

Since X has been centered, then we have XXT
¼nSt¼n(SbþSw).

With (23), we then have

�ðXXT
Þ
�0:5
ðSb�SwÞðXXT

Þ
�0:5
ðXXT
Þ
0:5mi ¼ diðXXT

Þ
0:5mi ð24Þ
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e with 5, 10 images for each individual randomly selected for training.



J. Gui et al. / Pattern Recognition 45 (2012) 2884–28932890
where di¼�1þci/nþnci. Therefore (XXT)0.5mi is the eigenvector of

�(XXT)�0.5(Sb�Sw)(XXT)�0.5.

Let y denote the acute angle between (XXT)0.5 mi and (XXT)0.5 wi.

By directly applying Lemma 1 we have

sinðyÞr
a
g JðXXT

Þ
�0:5
ðXSaXT

ÞðXXT
Þ
�0:5J2:

when g goes to infinity, it is easy to see that sin(y)-0. Therefore,

there exists a constant b such that

ðXXT
Þ
0:5
ðwi�bmiÞ ¼ 0 ð25Þ

Since we assume that XXT
g0, we have

wi�bmi ¼ 0 ð26Þ

This completes the proof of Theorem 1. &

When the parameter g assumes the value of zero, DSNPE
degenerates into SNPE. From this point it can be concluded that
SNPE is a special case of DSNPE.
Fig. 6. Some typical samples of the cropped images found in the AR face image

database.
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Fig. 7. Recognition accuracy vs. dimensionality on the AR face database.
4. Experimental results

In this section, we conducted a set of experiments to verify the
effectiveness of the proposed DSNPE method. Three face data-
bases were used, including Yale, Extended Yale B and the AR face
image database.

In each experiment, the image set was partitioned into a
training set and test set with different numbers. For ease of
representation, the experiments were named as p-train, which
means that p images per individual were selected for training and
the remaining images for test. To robustly evaluate the perfor-
mance of different algorithms in different training and testing
conditions, we selected images randomly and repeated the
experiment 20 times in each condition. We exhibited the results
in the form of mean recognition rate with standard deviation.

We compare DSNPE with several representative dimensional
reduction methods such as PCA [2], LDA [2], LPP [23,58], DLPP/
MMC [24], LPDP [26], NDLPP [25], SNPE1 [42], and SNPE2 [42].
The nearest neighbor classifier is employed for classification. For
LPP, the number of nearest neighbors k is taken to be p�1 as done
in [59] where p is the number of images per individual selected
for training. For DSNPE, we simply set the value of g as 1.

4.1. Experimental results on the Yale database

The Yale face database was constructed at the Yale Center
for Computation Vision and Control. There are 165 images
of 15 individuals (each person providing 11 different images).
The images demonstrate variations in lighting condition (left-
light, center-light and right-light), facial expression (normal,
happy, sad, sleepy, surprised, and wink), and with or without
glasses. All images were also in grayscale and cropped and resized
to the resolution of 32�32 pixels. We pre-processed the data by
normalizing each face vector to the unit. Shown in Fig. 1 is one
object from Yale database. The top ten Eigenfaces, Fisherfaces,
DSNPE1faces, and DSNPE2faces of Yale images are shown in Fig. 2.

For each person, p images (p varying from 2 to 8) were
randomly selected for training, and the rest were used as test
samples. The training set was used to learn a face subspace.
Recognition was then performed in the subspaces. In general, the
recognition rates vary with the dimension of the face subspace.
Table 2 shows the maximal average recognition rates across
20 runs of each method under nearest neighbor classifier and
their corresponding standard deviations (std) and dimensions,
where the best results are highlighted in bold.

The recognition rate curves of different algorithms are drawn
in Fig. 3 where SNPE1 denotes the SNPE algorithm based on
Eq. (1), SNPE2 denotes the SNPE based on Eq. (2).

DSNPE1 denotes the DSNPE algorithm based on Eq. (15) and
DSNPE2 denotes the DSNPE based on Eq. (16). Due to the space
limitation, we only draw the recognition rate curves of some
representative methods in Fig. 3. For the baseline method, we
simply performed face recognition in the original 1024-dimen-
sional image space. Note that the upper bound of the dimension-
ality of LDA is c�1 where c is the number of individuals [2].

As can be seen, our algorithm DSNPE1 outperformed all other
methods except for 2 train while the PCA method performed the
worst in all cases. It is very interesting that the PCA method and
the baseline method have the same performance when p varies
from 2 to 5 which is consistent with the results in many
publications such as [60].
4.2. Experimental results on the Extended Yale B database

The Extended Yale B database [50] contains 2414 front-view
face images of 38 individuals. For each individual, about 64
pictures were taken under various laboratory-controlled lighting
conditions. In our experiments, we use the cropped images with
the resolution of 32�32. We pre-processed the data by normal-
izing each face vector to the unit. Thirty two cropped sample
images of one person in the Extended Yale B database after the
scale normalization are displayed in Fig. 4.



Table 4
Maximal recognition rates (percent) on the AR face database and the corresponding dimensions.

Methods Baseline PCA LPP LDA NDLPP LPDP DLPP/MMC SNPE1 SNPE2 DSNPE1 DSNPE2

Recognition rate 78.14 78.14 75.42 82.42 83.43 83.43 84 75.42 74.28 84.28 82

Dimension 2520 455 243 93 99 229 70 243 238 243 243
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For each individual, p images (p equals to 5 or 10) were
randomly selected for training and the rest were used for test.
The experimental design is the same as in Section 4.1. The maximal
average recognition rate, the corresponding dimensionality and the
standard deviations across 20 runs of tests of each method are
shown in Table 3. The best results are highlighted in bold face font.
In addition, we draw the recognition rate curves of some repre-
sentative algorithms in Fig. 5.

As can be seen, our DSNPE algorithm performed the best in all
cases. Moreover, the PCA method and the baseline method have
nearly the same performance as the Yale face database.
4.3. Experimental results on the AR face database

The last experiment was tested using the AR face database
(http://rvl1.ecn.purdue.edu/�aleix/aleix_face_DB.html) which con-
tains over 4000 color face images of 126 individuals (70 men and 56
women), including frontal views of faces with different facial
expressions, illumination conditions and occlusions. The pictures
of most persons were taken in two sessions (separated by two
weeks). Each section contains 13 color images. In our experiments
here, we use a subset of the AR face database provided and
preprocessed by Martinez [4]. This subset contains 1400 face
images corresponding to 100 person (50 men and 50 women),
where each person has 14 different images with illumination
change and expressions. The original resolution of these image
faces is 165�120. Here, for computational convenience, we manu-
ally cropped the face portion of the image and then normalized it to
62�44 pixels. The normalized images of one person are shown in
Fig. 6, where the images in the first row in Fig. 6 are from Session 1,
and the images in the second row are from Session 2. The details of
the images are: Fig. 6a neutral expression, Fig. 6b smile, Fig. 6c
anger, Fig. 6d scream, Fig. 6e left light on; Fig. 6f right light on,
Fig. 6g all sides light on, and Fig. 6h–n were taken under the same
conditions as Fig. 6a–g. Since AR database has naturally been
partitioned into two sessions, we also consider this case in our
experiments. In this experiment, images from the first session (i.e.,
Fig. 6a–g) were used for training, and images from the second
session (i.e., Fig. 6h–n) were used for test.

As the training set and test set are fixed, we only give the
recognition rates of different algorithms. The maximal recognition
rate of each method and the corresponding reduced dimension
are listed in Table 4. The recognition rate curves of some
representative algorithms vs. the variation of dimensions are
shown in Fig. 7. From the experimental results, we can see that
DSNPE1 achieves the highest recognition rate.
5. Conclusions

In this paper, we developed a new sparse dimensionality
reduction method called discriminant sparse neighborhood pre-
serving embedding (DSNPE). Our proposed method combines
sparsity criterion and maximum margin criterion (MMC) together
to project the input high-dimensional image into a low-dimen-
sional feature vector. Therefore both the robustness advantage of
sparse representation and distinctiveness advantage of MMC are
integrated to develop a good pattern recognition solution.

The proposed DSNPE method is applied for face recognition.
The testing results on three face image databases, i.e., Yale,
Extended Yale B and AR face database demonstrate that DSNPE
is more effective than some popular dimensionality reduction
algorithms. These experiments are mainly designed to prove the
effectiveness of DSNPE for pattern recognition task oriented
feature dimensionality reduction. Because the DSNPE algorithm
is directly applied on the original facial images rather than local
features such as Gabor, LBP features, the accuracy of face
recognition in our experiments has still a big gap from practical
face recognition applications. However, we argue that DSNPE
provides a useful tool of dimensionality reduction which may
benefit state-of-the-art pattern recognition algorithms. Our future
work will apply DSNPE algorithm on advanced visual features
rather than the original pixel intensity values. And some useful
strategies (e.g., localizing the training images, synthesizing virtual
samples) will also be incorporated into the pattern recognition
scheme to achieve much higher pattern recognition accuracy for
face, iris and palmprint recognition.
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Appendix. The formulation for deriving Eq. (4)
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