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bstract

Although English pitch accent detection has been studied extensively, there relatively a few works explore Mandarin stress
etection. Moreover, the comparison and analysis between Mandarin stress detection and English pitch accent detection have not
een touched for such counterpart tasks. In this paper, we discuss Mandarin stress detection and compare it with English pitch accent
etection. The contributions of the paper are two aspects: one is that we use classifier combination method to detect Mandarin stress
nd English pitch accent by using acoustic, lexical and syntactic evidence. Our proposed method achieves better performance on
oth the Mandarin prosodic annotation corpus—ASCCD and the English prosodic annotation corpus—Boston University Radio
ews Corpus (BURNC) when compared with the baseline system. We also verify our proposed method on other prosodic annotation

orpus and continuous speech corpus. The other is the feature analysis. Duration, pitch, energy and intensity features are compared
or Mandarin stress detection and English pitch accent detection. Based on the analysis of prosodic annotation corpora, we also
erify some linguistic conclusions.

2011 Elsevier Ltd. All rights reserved.
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. Introduction

Prosody is a complex weave of physical, phonetic effects that is being employed to express attitude, assumptions,
nd attention as a parallel channel in our daily speech communication. The semantic content of a spoken or written
essage is referred to as its denotation, while the emotional and attentional effects intended by the speaker or inferred

y a listener are part of the message’s connotation. Prosody plays an important supporting role in guiding a listener’s
ecovery of the basic messages (denotation) and a starring role in signaling connotation, or the speaker’s attitude toward

he message, toward the listener(s), and toward the whole communication event. From the listener’s point of view,
rosody consists of systematic perception and recovery of a speaker’s intentions based on pauses, pitch, rate/relative
uration, and loudness. Many speech applications can benefit from corpus annotated with prosodic information, such as
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speech understanding and speech synthesis, but it is very expensive and time-consuming to annotate prosody manually,
therefore, an automatic prosodic annotation algorithm will be very useful for building spoken language understanding
systems.

In this paper, the main prosodic event that we consider is stress (or prominence, highlighting). Stress refers to the
greater perceived strength or emphasis of some syllables in a phrase. Many research studies have been done in this area
at both the syllable and word level. Approaches typically combine lexical, syntactic features, such as part-of-speech,
word identity and term frequency, with acoustic features derived from the speech waveform, such as duration, pitch,
and energy. A variety of machine learning approaches have been used in order to model these acoustic, lexical and
syntactic features.

Different classifiers combination method is often used to prosodic event detection. In this paper, we combine some
methods, which have been used for English or other language pitch accent detection, to detect Mandarin stress and
English pitch accent by using acoustic, lexical and syntactic evidence, and discuss the differences and the similarities
between Mandarin stress detection and English pitch accent detection. We use classifier combination method, which is
the combination of boosting classification and regression tree (CART) classifier and conditional random fields (CRFs)
classifier, to detect Mandarin stress and English pitch accent, and verify our proposed method (an optimal classifier
combination) through two different ways. One is on prosodic annotation speech corpora. On the Mandarin prosodic
annotation speech corpus—ASCCD and English prosodic annotation speech corpus—Boston University Radio News
Corpus (BURNC), our proposed method can achieve 81.1% Mandarin stress detection accuracy rate and 90.8%
English pitch accent detection accuracy rate separately, and there are 1.8% and 3.5% improvements when compared
with their baseline system, respectively. We also compare our proposed method with the previous counterpart work
on the same training set and testing set, and verify our proposed method on another Mandarin prosodic annotation
corpus—Coss-1 in which some of speeches data are labeled with prosody, and 52 situational dialogues between a man
and a woman are contained. Our proposed method achieves better results. The other way is on the “863” continuous
speech corpus, in which only a small quantity of speeches are labeled with prosody. We use our proposed automatic stress
annotation method to label “863” continuous speeches. When compared with a small number of manual annotations,
the concordance rate is 95.5%. In this paper, we also analyze the function of the duration, pitch, energy and intensity
features in Mandarin stress detection and English pitch accent, and compare the differences and the similarities between
Mandarin stress detection and English pitch accent detection. Based on the feature analysis on prosodic annotation
corpus, we also verify some linguistic conclusions.

The paper is organized as follows. Next section will describe related work. In Section 3, we provide details about the
corpora. In Section 4, the features used in Mandarin stress detection and English pitch accent detection are introduced,
which include acoustic features, lexical and syntactic textual features. In Section 5, the stress detection algorithm is
presented. Our experiments and results are introduced in Section 6. In Section 7, we make the feature analysis and
compare the differences and the similarities between Mandarin stress detection and English pitch accent detection. In
Section 8, we discuss the differences between Mandarin stress detection and English pitch accent detection further.
The final section gives a brief summary along with future research directions.

2. Related work

Many approaches have explored to pitch accent detection at the word, syllable and vowel level based on acoustic,
lexical and syntactic information. These approaches can be divided into three categories according to information
source utilized in pitch accent detection, namely: detecting stress or pitch accent only from the acoustic information,
detecting stress or pitch accent only from text information, and detecting stress or pitch accent from both the acoustic
and text information.

Detecting stress or pitch accent from the acoustic information is often used. Applying HMM and other short-frame
based models to detect stress is one of these methods. Chen and Withgott utilized a supervised Hidden Markov Model
to model smoothed pitch and intensity features in order to detect stress. This approach is the first of many approaches to
utilize HMM and other short frame based models to detect stress [1]. Conkie used an HMM to detect pitch accent using

speaker normalized pitch and energy values at 10 ms frames, with delta and delta deltas of values. The acoustic HMM
achieved 82.8% accuracy rate [2]. Ananthakrishnan used a coupled HMM (CHMM) that modeled the asynchrony
between different acoustic streams, to detect pitch accent. He used pitch, energy and duration features as inputs to train
CHMM model. The pitch accent detection accuracy rate at word level and at syllable level, respectively, are 72.03% and
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3.93% [3]. While a great number of approaches have utilized short frame acoustic features for pitch accent detection,
thers have extracted the acoustic information over vowels, syllables or words. And then, these features are applied to
rain classifiers by using supervised machine learning methods to detect whether the syllable or word is accented or
ot. Wightman and Ostendorf utilized decision trees to model acoustic evidence (such as pitch, energy and duration
vidence) in order to detect binary pitch accent at the syllable level [4]. Ostendorf and Ross proposed a stochastic
odeling framework to predict pitch accent at the syllable level. The pitch, duration and energy feature and segmental

haracteristic of syllable sequence were used as input of this structure [5]. Sun proposed ensemble learning methods
o predict pitch accent at the syllable level. Using boosting with CART methods, he had acquired 89.90% pitch accent
etection accuracy rate by using acoustic features on a single speaker from BURNC evaluation task [6]. Rosenberg and
irschberg applied a two-stage classification technique which predicts pitch accent at rates close to human performance
y using energy, pitch and duration related features. They could achieve 84.1% accuracy rate on the read portion of the
oston Directions Corpus (BDC) at the word level [7]. Chen built Gaussian mixture model (GMM) based on acoustic
vidence at maximum likelihood framework for binary pitch accent detection. 77.34% accuracy rate could achieve on
he leave-one-speaker-out evaluation task on BURNC at the syllable level [8]. Ananthakrishnan and Narayanan used
he maximum a posteriori (MAP) framework for prosodic event detection at the syllable level. They utilized neural
etwork (NN) to model acoustic evidence, and achieved 80.07% pitch accent detection accuracy rate when combined
ith a 4-g de-lexicalized prosodic language model [9]. Jeon showed that the neural network classifier achieved the
est performance for modeling acoustic evidence, and support vector machines were more effective for lexical and
yntactic evidence. The NN-based acoustic model yielded 83.53% pitch accent detection accuracy rate at the syllable
evel [10].

Predicting stress from text has been studied extensively in the past due to its critical role in text-to-speech system. In
eneral, when approaches utilize only text features, it is for prosodic assignments, as opposed to prosodic analysis. Many
pproaches to prosodic assignment operate similarly. The common is to utilize some supervised statistical machine
earning methods and some features derived from part-of-speech tags, syntactic chucks or syntactic parse trees to
ssign pitch accent locations. The differences come down to the machine learning method and the features. Hirschberg
escribed a technique for pitch accent detection using part-of-speech information, complex nominal status and surface
osition information. He could achieve 76.5% accuracy rate on 3 speakers for BURNC evaluation task at the word
evel [11]. Ross and Ostendorf applied an HMM over decision tree posteriors to detect pitch accent from text. They
tilized a multi-stage approach, first detected the pitch accent, then assigned pitch accent type, and finally assigned
hrase boundary intonation. Based on the text from a single BURNC speaker (f2b), part-of-speech, prosodic phrase
tructure, given/new status, lexical stress information, paragraph structure were all extracted for training the decision
ree model. They could predict pitch accent placement from text with 87.7% accuracy rate at the syllable level and
2.5% accuracy rate at the word level [12]. Gregory and Altun utilized conditional random fields (CRFs) to detect pitch
ccent only based on text related features. The features, such as part-of-speech, probabilistic variables, were applied
o model pitch accent. When evaluating on Switchboard corpus, they could achieve 76.36% accuracy rate at the word
evel [13]. Nenkova identified a simple lexical attribute, which is remarkably successful in pitch accent detection. They
efined a term named accent ratio, which is used to capture the accent rate of a given word. This feature could acquire
5.59% pitch accent detection accuracy on Switchboard corpus [14]. Fernandez and Ramabhadram explored applying
onditional random fields to automatically label major and minor break indices and pitch accent by using a large set of
ully automatically extracted acoustic and linguistic features. Their experimental results demonstrated the robustness
f their used features have the function of reducing the amount of training data when used in a discriminative training
ramework. They also explored how to adapt the baseline system in an unsupervised fashion to target dataset for which
o prosodic labels are available. F-measure was used to summarize performance. They could achieve 83.5% when
lassifying pitch accent on BURNC [15].

Combination of the acoustic information with the text information at the word level or syllable level for pitch accent
r stress detection is studied extensively too. Conkie combined the acoustic prosodic model based on HMM with the
yntactic prosodic model based on a stochastic finite state model for pitch accent detection, and 88.3% pitch accent
ccuracy rate could achieve [2]. Ananthakrishnan used a coupled HMM (CHMM) to model the multiple, asynchronous

coustic feature streams, and achieved 79.50% accuracy rate at word level and 74.84% accuracy rate at syllable level
hen combined with a syntactic language model [3]. Wightman and Ostendorf combined the acoustic prosodic model
ased on decision trees with a probabilistic model (bi-gram) for pitch accent detection. When evaluated on a single
peaker from the BURNC, 81.51% accuracy rate could achieve [4]. At the stochastic modeling framework, Ostendorf
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Table 1
Summary of different approaches pitch accent detection performance.

Paper Features Corpus Domain Model Accuracy rate (%)

Conkie [2] Acoustic TTS and BN Word HMM 82.8
Conkie [2] Acoustic, lexical and syntactic TTS and BN Word HMM and stochastic

model
88.3

Ananthakrishnan [3] Acoustic BURNC Word CHMM 72.03
Ananthakrishnan [3] Acoustic, lexical and syntactic BURNC Word CHMM and syntactic

language model
79.5

Wightman et al. [4] Acoustic, lexical and syntactic BURNC Syllable Decision tree and
HMM

81.51

Ostendorf et al. [5] Acoustic, lexical and syntactic BURNC Syllable Stochastic model 89
Sun [6] Acoustic BURNC Syllable AdaBoost 89.9
Sun [6] Acoustic, lexical and syntactic BURNC Syllable AdaBoost and bagged 92.78
Rosenberg [7] Acoustic BDC Word Ensemble machine

learning
84.1

Chen [8] Acoustic BURNC Syllable GMM 77.34
Chen [8] Acoustic, lexical and syntactic BURNC Syllable GMM and NN 86.4
Ananthakrishnan et al. [9] Acoustic BURNC Syllable NN 80.07
Ananthakrishnan et al. [9] Acoustic, lexical and syntactic BURNC Syllable NN and n-gram 86.75
Jeon [10] Acoustic BURNC Syllable NN 83.53
Jeon [10] Acoustic, lexical and syntactic BURNC Syllable NN and SVM 89.8
Hirschberg [11] Lexical and syntactic BURNC Word CART 76.5
Ross et al. [12] Lexical and syntactic BURNC Word CART and HMM 82.5
Gregory et al. [13] Lexical and syntactic Switchboard Word CRFs 76.36

Nenkova [14] Lexical and syntactic Switchboard Word Decision tree 76.65

and Ross utilized the pitch, duration, energy feature and segmental characteristic of syllable sequence to detect pitch
accent. When evaluated on a single speaker from the BURNC, Ostendorf and Ross were able to detect pitch accent
with 89% accuracy rate at the syllable level [5]. Sun combined the acoustic model based on Adaboost with the lexical
and syntactic model based bagged CART model for pitch accent detection, 92.78% accuracy rate could achieve on a
single speaker from BURNC evaluation task at the syllable level [6]. After Chen combined the acoustic prosodic model
based on Gaussian mixture model (GMM) with the syntactic prosodic model based on artificial neural network (ANN),
he could achieve 86.4% pitch accent detection accuracy rate on the BURNC at the syllable level [8]. At the maximum
a posteriori (MAP) framework, Ananthakrishnan and Narayanan utilized an n-gram structure for prosodic language
model, and neural network (NN) for modeling acoustic evidence. 86.75% pitch accent detection could achieve when
combing acoustic prosodic model based on NN with lexical and syntactic prosodic model based on n-gram at the
syllable level [9]. Jeon listed the English pitch accent detection results based on various classifiers, compared different
modeling methods based on Boston University Radio News Corpus, and finally drew conclusions that neural network
was very efficient to model acoustic evidence, and SVM was better than other classifiers to model lexical and syntactic
evidence. The combined model of acoustic and syntactic models achieved an accuracy of 89.8% in English pitch accent
detection at the syllable level [10]. Table 1 lists the performance of approaches described above.

In contrast to English pitch accent detection, very few researches about Mandarin stress detection have been reported.
Shao et al. [16] applied three stress prediction models (acoustic model, linguistic model and mixed model) based on
artificial neural networks (ANNs) to predict Chinese Mandarin sentential stress. The result showed that the mixed
model was better than the other two models, and achieved 84.3% accuracy rate. Hu et al. [17] first designed some
questions to classify syllables into different categories according to its context, so each syllable has a class label.
In order to overcome the problem of data sparsity and co-articulation of syllables in some classes, he used K-mean
clustering to classify syllables in these classes, which contain few syllables, into other classes. Finally, for each class,
he used Eq. (1) to model stress.
Y × $s = CX × $s + B (1)

where X × $ s is the feature of syllable; Y × $ s is the type of syllable stress; C, B are the undetermined coefficients.
His method could achieve around 81% accuracy rate. Massive progresses have been made based on acoustic, lexical
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Table 2
Stress distribution in ASCCD.

Total Unstressed Stressed

87,586 53,656 33,930
100% 61.26% 38.74%

Table 3
The syllable distribution of different speakers in ASCCD.

Speaker F001 F002 F003 F004 F005 M001 M002 M003 M004 M005 Common

Unstressed
Untoneda 851 873 851 857 855 782 888 851 867 818 722
Normal 4322 4644 4833 4678 4610 4527 4889 3850 4698 4214 1174

Stressed 3589 3245 3073 3226 3293 3449 2988 4052 3199 3714 682

a Mandarin untoned syllable is the special voice variation because syllable read continuously. It not only relates to variation in segment, but also
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n supra-segment. It is mainly manifested in decrease in duration, narrow in pitch range, weakening in intensity. The normal syllable is normal
ronunciation syllable. We believe the untoned syllable and normal syllable are unstressed syllable.

nd syntactic information in the recent years. However, it is still not clear the differences and the similarities between
hose two applications. To address this issue, our work will analyze and compare the differences and the similarities
etween Mandarin stress detection and English pitch accent detection.

. Corpora

Three corpora—ASCCD, Coss-1 and BURNC, annotated with prosody are used in our experiments. ASCCD is
esigned for TTS and labeled with prosody, is used in our research. The text of ASCCD contains 18 pieces of narration
r argumentum. Each piece contains 2–5 sections and 500–600 syllables. The text was read by 10 speakers, who are
001, M002, M003, M004, M005, F001, F002, F003, F004 and F005 separately (five males and five females). The

peech was annotated based on SAMPA-C system [18] to describe sound variation phenomena, such as centralization,
eduction, and insertion. The break indices and stress were annotated based on C-ToBI system [19]. In the corpus,
rosodic boundary was labeled by 0, 1, 2, 3, and 4, which stand for syllable boundary in prosodic word, prosodic
ord boundary, minor prosodic phrase boundary, major prosodic phrase boundary and intonation group boundary,

espectively. Stress was labeled by 0, 1, 2 and 3, which stand for unstressed, prosodic word (PW) stress, minor prosodic
hrase (MIP) stress and major prosodic phrase (MAP) stress, respectively. In this paper, we will classify the syllables
nto one of unstressed syllable and stressed syllable, and won’t discriminate PW stress, MIP stress, and MAP stress
urther. Table 2 lists the distribution of stress in the corpus. Table 3 lists the syllable distribution of different speakers
n the corpus.

Coss-1 is used for verifying our proposed method, in which some of speech data are labeled with prosody. The
peeches with prosodic annotation are 52 situational dialogues between a man and a woman, which are about 8 min.
he annotation information consists of Pinyin, mood, tone and intonation, stress and prosodic structure. Table 4 lists

he distribution of stress in the corpus.

Boston University Radio News Corpus (BURNC) is used to verify our proposed method for English pitch accent

etection [20]. BURNC is a database of broadcast news style read speech that contains the ToBI-style prosodic
nnotations for part of data. Data annotated with ToBI-style labels are available for six speakers (f1a, f2b, f3a, m1b,

able 4
tress distribution in Coss-1.

otal Unstressed Stressed

662 1263 399
100% 75.99% 24.01%
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Table 5
The statistics of Boston University Radio News Corpus.

Female Male

f1a f2b f3a m1b m2b m3b

#Utterances 74 164 33 72 51 24
#Words 3993 12,607 2733 5059 3608 2093
#Syllables 6562 20,700 4422 8144 5904 3354

#Accents 2344 7061 1545 2786 2113 1094

m2b and m3b), which amounts to speeches of 3 h. The corpus is annotated with orthographic transcription, automatically
generated and hand-corrected part-of-speech (POS) tags, pitch and automatic phone alignments information. Table 5
lists the statistics of BURNC.

In our experiment, we use Mandarin continuous speech corpus which is provided by China National Hi-Tech
Project 863 for Mandarin large vocabulary continuous speech recognition (LVCSR) system development, to implement
automatic stress annotations [21]. “863” continuous speech corpus contains 200 speakers (100 male, 100 female), and
520–625 sentences for each speaker. The texts are from People’s Daily, which contain 2185 continuous statements
in total. This means that each sentence is repeated by multiple speakers. For long statements in all 2185 continuous
statements, they are splitted into multiple sentences according to punctuation. For Mandarin large vocabulary continuous
speech recognition (LVCSR) system development, each speech file includes a Chinese character text file and a Chinese
Pinyin (pronunciation) text file. The dictionary contains 48,186 Chinese characters. In our experiments, we only use
83 male speakers’ data (48,373 sentences, 55.6 h) to annotate stress.

4. Features

In the following subsections, the acoustic, lexical and syntactic features used in Mandarin stress detection and
English pitch accent detection are introduced. In order to eliminate the natural variations among different speakers,
some features must be normalized.

4.1. Features used in Mandarin stress detection

4.1.1. Duration
The linguistic theories of prosodic stress (or prominence) tend to consider syllable duration as one of the fundamental

acoustic parameters for detecting syllable stress. For every syllable, we extract the following duration features:

durSyl: the duration of current syllable (second);
normarlDurSyl: the normalized duration of current syllable;
durSilCurFol: the duration of the silence pause between the current syllable and the following syllable (second);
durSilCurPre: the duration of the silent pause between the current syllable and previous syllable (second);
silTypeCurFol: the type of the silence between the current syllable and the following syllable1;
silTypeCurPre: the type of the silence between the current syllable and previous syllable;
ratioDurCurPre: the ratio between the duration of current syllable and the duration of previous syllable;

ratioDurCurFol: the ratio between the duration of current syllable and the duration of following syllable;
finalDur: the finals duration of the current syllable;
normalFinalDur: the normalized finals duration of the current syllable; and
ratioFinalCurPre: the ratio between the finals duration of current syllable and the finals duration of previous syllable.

1 There are different types of silence in the SAMPA-C system. They are long silence, silence and voiced silence.



i

4

e
s
m
a
f

s
P
w
c

s
t

4

i
s
[
r
p
w
[
e
2
0
b

s

C. Ni et al. / Computer Speech and Language 26 (2012) 127–148 133

For those normalized duration related features, the Z-score2 method is used. There are 11 duration related features
n total.

.1.2. Pitch
At first, we extract pitch by setting the time step to be 0.01 s, Pitch floor to be 50 Hz, Pitch ceiling to be 500 Hz to

xtract pitch contour with the help of Praat [22], and then in order to reduce the effect by both inter-speaker and intra-
peaker variation, we use Z-score method to normalize pitch. For each syllable, we compute the minimum (pthMin),
aximum (pthMax), range (maximum minus minimum, pthRange), mean (pthMean), root mean squared (pthRMS)

nd standard deviation of pitch (pthSdDev) as pitch related statistic features. We also compute pitch related dynamic
eatures in the contextual window. The following methods are used to compute dynamic features.

Let us use PC
max represent the maximum pitch in current syllable, PC

min represent the minimum pitch in current
yllable, PC

mean represent the mean pitch in current syllable, Pmean represent the mean pitch in the contextual window,
std.dev represent the standard deviation in the contextual window, Pmax represent the maximum pitch in the contextual
indow, and Pmin represent the minimum pitch in the contextual window. So the dynamic features in contextual window

an be computed using the formulas (2)–(7).

P∗
max = PC

max − Pmean

Pstd.dev
(2)

P∗
mean = PC

mean − Pmean

Pstd.dev
(3)

P∗∗
max = PC

max

Pmax − Pmin
(4)

P∗∗
mean = PC

mean

Pmax − Pmin
(5)

P∗∗
min = PC

min

Pmax − Pmin
(6)

P∗∗
range = PC

max − PC
min

Pmax − Pmin
(7)

Most Chinese words are monosyllabic or disyllabic; and the previous syllable has more influence than the following
yllable on stress. Therefore, we choose the previous two syllables and one following syllable of current syllable as
he contextual window. There are 12 the pitch related features in total.

.1.3. Energy
There is consensus that the energy of a word or syllable correlates with stress. How to use the energy information

n the speech signal to predict stress has not yet been determined. Sluijter and van Heuven [23] showed that stress
trongly correlates with the energy within a particular frequency, namely that greater than 500 Hz in Dutch. Heldner
24,25] and Fant et al. [26] examined the role of this “spectral emphasis” in read Swedish speech, and found that the
elationship between the energy in a particular spectral region and the overall energy of the signal was an excellent
redictor of pitch accent. Tamburini [27] showed that the energy components of the 500–2000 Hz frequency band
ere more predictive of prominence than those from either 0 to 500 Hz or above 2000 Hz. Rosenberg and Hirschberg

7] found that the frequency region most robust to speaker difference was between 2 and 20 bark, and using only
nergy features, he could predict stress in read speech with an accuracy of 81.9%. Frequency between 500 Hz and

000 Hz is used to compute the energy related features. First, we take short time Fourier transforms (Hamming window,
.02 s window length, 0.01 s frame shift) to speech, and then compute the energy of special frequency band which is
etween 500 Hz and 2000 Hz. The energy related features include the minimum (engMin), maximum (engMax), mean

2 Z-score normalization: xnorm = x−μ
σ

, where x is a value to normalize, μ and σ are mean and standard deviation which are estimated from all
yllable duration, or pitch, energy and intensity for a speaker.
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(engMean), range (maximum minus minimum, engRange), standard deviation (engStdDev) and root mean squared
(engRMS) of energy for current syllable. In order to capture the dynamic variety of the energy in the context of the
current syllable, we also calculate the dynamic features of the current syllable in the contextual window. The method
of computing energy dynamic features is the same as the method of computing pitch dynamic features. There are 12
energy related features in total.

4.1.4. Intensity
We also compute the intensity related features which are similar to compute pitch and energy related features. There

are 12 intensity related features in total.
We acquire intensity of speech with the help of Praat [22]. In the processing, we set minimum pitch to be 50 Hz,

time step to be 0.01 s.
The difference between the energy and the intensity related features is that we only compute the speech energy

related features between 500 Hz and 2000 Hz, but there is not restriction when computing the intensity related features.

4.1.5. Lexical and syntactic features
Predicting stress from text has been studied extensively due to its critical role in the text-to-speech system. It has

shown that many factors can affect stress placement. In this work, we first use Stanford Chinese word segmenter to
segment Chinese word, then use Stanford postagger to get part-of-speech tags [28–30]. The lexical and syntactic related
feature set mainly consists of the following:

sylID: the syllable with tone or the index of the syllable with tone;
T, T1, T2: the tone of the current, the previous and the following syllable;
bSeg: whether the current syllable is the boundary of word or not;
numSyl: number of syllables in the current word;
numSylFrmSta: number of syllables from the beginning of the current word boundary;
numSylFrmEnd: number of syllables to the end of the current word boundary;
ratioPstCurLen: the ratio between the position of the current syllable in the word and the length of the word; and
posTag, posTagPre, posTagFol: tag of the current, the previous and the following word.

We also compute the probabilistic variables according to training corpus, and regard these variables as features.
These variables are unigram, bigram, reverse bigram, joint and reverse joint.

Let us suppose wi, i = 1, 2· · ·n represent ith syllable in the sentence (n is syllable number in the sentence). The
probabilistic variables can be defined as following: The unigram variable is defined as log p(wi), the bigram variable
is defined as log p(wi|wi−1), the reverse bigram variable is defined as log p(wi|wi+1), the joint variable is defined as
log p(wi−1, wi) and the reverse joint variable is defined as log p(wi, wi+1).

There are 17 lexical and syntactic related features in total. In all of the lexical and syntactic related features, such
features are categorical, including the types of the features, the syllable with tone or the index of the syllable with tone,
the tone of the current, the previous and the following syllable, whether the current syllable is the boundary of word
or not, and tag of the current, the previous and the following word. The others are numeric.

In order to use CRFs to model acoustic, lexical and syntactic features, each continuous feature is binned into 10
equal categories according to the range of the feature. We also tried more bins and got similar results, hence, only
results binned by 10 will be reported.

Features obtained from acoustic cues, lexical and syntactic information are used for Mandarin stress detection.
There are 64 the acoustic-related, lexical-related and syntactic-related features in total.

4.2. Features used in English pitch accent detection

In English pitch accent detection, we extract the following features at syllable level according to the Refs. [10,13,36].

In order to reduce the effect by inter-speaker and intra-speaker variation, both values of pitch and energy are normalized
(Z-score) with utterance specific means and variances.

Pitch range (4 features): maximum pitch (pthMax), minimum pitch (pthMin), mean pitch (pthMean) and pitch range
(difference between maximum and minimum pitch, pthRange).
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Pitch contour (6 features): 6 coefficients of Legendre polynomial (pthCoefi, i = 0, 1,. . .,5).
Energy range (4 features): maximum energy (engMax), minimum energy (engMin), mean energy (engMean) and

nergy range (difference between maximum and minimum energy, engRange).
Energy contour (6 features): 6 coefficients of Legendre polynomial (engCoefi, i = 0, 1,. . .,5).
Duration (1 feature): duration of the syllable (durSyl).
Lexical and syntactic features (3 features): the syllable (sylID), lexical stress (exist or not) (bLexical) and POS tag

posTag).
For pitch contour and energy contour, we use 5-order Legendre polynomial expansion to get 6 coefficients of

egendre polynomial.
Let us suppose f(t) to be a pitch or energy contour (where t represents time), then the Legendre polynomial expansion

f f(t) can be approximated as

f (t) ≈
M∑

n=0

anPn(t) (8)

here Pn(t) =

⎧⎪⎪⎨
⎪⎪⎩

1 n = 0

t n = 1
2n − 1

n
tPn−1(t) − n − 1

n
Pn−2(t) n ≥ 2

is the n-th Legendre polynomial, an is the coefficient of

xpansion equation. Each coefficient in expansion Eq. (8) represents a certain meaning, and models a particular aspect
f the contour, such as a0 stands for the mean of the segment, and a1 is interpreted as the slope.

We also compute these lexical and syntactic features in the contextual window, which contains 2 previous and 2
ext syllables of the current syllable. There are 15 lexical and syntactic features in total. So we can get 36 features in
otal.

. Classifiers

The combination of different classifiers is often utilized for the prosodic events detection, which can combine
ifferent information sources and different modeling methods, and compound the advantage of different models.

In Ref. [10], Jeon listed Eqs. (9)–(12) that are often used for stress detection. So we cite directly and list these
quations below.

The most likely sequence of stress P∗ = {p∗
1, p∗

2, · · ·p∗
n} is

P∗ = arg max p(P |A, S) (9)

P∗ ≈ arg max p(P |A)p(P |S) (10)

P∗ ≈ arg max
n∏

i=1

p(pi|ai)
λp(pi|φ(si)) (11)

P∗ ≈ arg max λ

n∑
i=1

log (p(pi|ai)) +
n∑

i=1

log (p(pi|φ(si))) (12)

here A = {a1, a2, · · · , an} is the sequence of acoustic feature, ai = (a1
i , a2

i , · · ·, at
i) is the acoustic feature vector

orresponding to the syllable, S = {s1, s2, · · · , sn} is the sequence of syntactic evidence, φ(si) is chosen such that it
ontains lexical and syntactic evidence from the contextual window of the current syllable, log (p(pi|ai)) is the acoustic-
tress model score, log (p(pi|φ(si))) is the syntactic-stress model score, and λ is a weighting between the acoustic-stress
nd syntactic-stress model. The acoustic-stress model and syntactic-stress model can be obtained by using machine
earning methods. The statistical machine learning methods, such as classification and regression trees (CART), neural

etwork (NN), support vector machine (SVM), can be used to model the acoustic related or lexical and syntactic
elated features, and then apply Eq. (12) to combine the acoustic-stress model and syntactic-stress model in order to
orm the final model. When modeling the acoustic related or lexical and syntactic related features, the same method or
ifferent methods can be utilized to model different kinds of features. About the combination of different classifiers,
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Ghahramani explored a general framework for the Bayesian model combination in the context of classification. His
framework models the relationship explicitly between each model’s output and the unknown true label [31]. In fact,
Eq. (12) is a specific case of classifier combination of two models.

Features extracted from the acoustic, lexical and syntactic are not fully independent. In order to reduce the compu-
tational complexity, p(P|A, S) has been simplified to p(P|A)p(P|S) in Eq. (10).

We can transform Eq. (9) into Eqs. (13)–(16).

P∗ = arg max p(P |A, S)

P∗ = arg max (λp(P |A, S) + (1 − λ)p(P |A, S)) (13)

P∗ = arg max (λp1(P |A, S) + (1 − λ)p2(P |A, S) (14)

P∗ = arg max

(
λ

(1 − λ)
p1(P |A, S) + p2(P |A, S)

)
(15)

P∗ = arg max(wp1(P |A, S) + p2(P |A, S)) (16)

where λ/(1 − λ) is equal to w. In Eq. (14), we suppose 0 < λ < 1. We give λp(P|A, S) a new symbol λp1(P|A, S), and
(1 − λ)p(P|A, S) another new symbol (1 − λ)p2(P|A, S). This is only a deformation of Eq. (9).

From Eqs. (13) to (16), we can find that (1) for each classifier p1 or p2, both the acoustic features and the lexical
and syntactic features are utilized to model. (2) After modeling both the acoustic features and the lexical and syntactic
features, two different classifiers are combined linearly. (3) In fact, Eq. (16) or (14) is also the combination of different
classifiers, and this combination method is two levels.

Eqs. (13)–(16) are only a deformation of Eq. (9). If we hold some hypothesis, Eqs. (13)–(16) can turn out to be
other methods. For example, if the same method is used to model p1 and p2, the method used in Eq. (16) is one type of
methods, of which ensemble machine learning method is one [6]. If we don’t use the same method to model p1 and p2,
and hold the hypothesis that the acoustic features and the syntactic features are independent, Eq. (16) can be written
as Eq. (12).

The differences between our proposed method and the one proposed by Jeon are that (1) our proposed classifier
combination method does not adopt the independent assumption between the acoustic features and the lexical and
syntactic features; (2) our proposed classifier combination method first models all features, including the acoustic and
the lexical and syntactic features, and then combines these models by classifier combination method, while the Jeon’s
method first models the acoustic or lexical and syntactic information separately, and then combines these models by
classifier combination method.

“Boosting” is a general method for improving the performance of the learning algorithm. It is a method for finding
a highly accurate classifier on the training set, by combining “weak hypotheses”, each of which needs only to be
moderately accurate on the training set. It has been applied with great success to several benchmark machine learning
problems by using decision trees mainly as base classifiers. AdaBoost is very popular and perhaps the most significantly
historical milestone as it was the first algorithm that could adapt for the weak learners [32]. Conditional random fields
(CRFs) are undirected graphical models that encode a conditional probability distribution with a given set of features.
CRFs are often used for labeling or parsing sequential data, such as natural language text [33]. No matter what the
word or syllable is or whether it is stressed or not, it may depend on not only the current word or syllable features,
but also the previous and following word or syllable features. Boosting methods can make use of the current word
or syllable features greatly. CRFs methods can model the previous and following word or syllable features. We use
Boosting classification and regression tree (CART) and CRFs methods to model p1 and p2, respectively.

6. Classification experiments

6.1. Experiments setup
In our experiments, WEKA implementation of C4.5 algorithm classifier (J48) is used to train decision tree model,
and WEKA implementation of sequential minimal optimization (SMO) algorithm is used to train SVM model [34].
CRF++ 0.53 is used to train CRFs model [35]. We create two-layer multilayer perception network with a single hidden
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Table 6
The performance of various acoustic-stress models on ASCCD and BURNC.

Accuracy rate (%) F-measure

Decision tree
ASCCD
Unstressed 76.7 0.795
Stressed 67.8 0.634
Mean 73.3 0.733
BURNC
Unaccented 85.2 0.862
Accented 73.9 0.723
Mean 81.4 0.815

Neural network
ASCCD
Unstressed 78.3 0.786
Stressed 65.5 0.652
Mean 73.4 0.734
BURNC
Unaccented 84.7 0.880
Accented 80.5 0.737
Mean 83.3 0.831
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ayer to train neural network (NN) model, in which the number of hidden unit in hidden layer is half of the number
f input features, and the 2 output nodes are chosen corresponding to the stressed and the unstressed separately. The
oosting CART model that we used in our experiments is obtained by using WEKA classifier MultiBoostAB as the

trong classifier, and select C4.5 decision tree (J48) as the weak classifier. In Jeon’s work [10], these classifiers, such
s C4.5 decision tree, SVM, neural network, are utilized to model the acoustic or the lexical and syntactic features in
nglish pitch accent detection on BURNC. So we decide to use these classifiers to model the acoustic or the lexical
nd syntactic features.

In all corpora, when constructing the training and testing sets, we guarantee that they are comprised not only of
istinct speakers, but also of distinct lexical contents.

In ASCCD corpus, we randomly select some sections from each speaker to compose the training set Tr, and the
thers make up the testing set T. The ratio between the size of training and testing sets at sentence level is 5:1. The
raining set contains 72,798 syllables, and the testing set contains 14,788 syllables.

In Coss-1 corpus, we randomly select 42 dialogues for training, the other 10 dialogues for testing. We extract pitch,
ntensity and energy between 500 Hz and 2000 Hz from speech with the help of Praat. The setting of Praat is the same
s in ASCCD corpus.

In BURNC, we use the pitch information, duration information and POS tag information coming from the annotation.
he energy information is extracted by using Praat [22]. We randomly select some utterances to compose the training
et and the testing set. The ratio between the size of training and testing sets at sentence level is 4:1. The training set
ontains 40,032 syllables, and the testing set contains 9054 syllables.

.2. Experimental results and analysis

.2.1. The Mandarin stress detection and English pitch accent detection with acoustic-stress model
First, we use decision tree and neural network to model the acoustic features. The experimental results are shown

n Table 6.
From Table 6, we can find that: the performances of decision tree classifier and neural network classifier show no
ignificant differences on ASCCD and BURNC. The performance of neural network (NN) is slightly better, but the
erformance of NN classifier in Mandarin stress detection is not better than in English pitch accent detection.
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Table 7
The performance of various syntactic-stress models on ASCCD and BURNC.

Accuracy rate (%) F-measure

Decision tree
ASCCD
Unstressed 81.2 0.833
Stressed 74.4 0.711
Mean 78.6 0.786
BURNC
Unaccented 89.6 0.880
Accented 75.3 0.778
Mean 84.7 0.845

SVM
ASCCD
Unstressed 83.5 0.797
Stressed 66.4 0.707
Mean 77.0 0.763
BURNC
Unaccented 89.1 0.873
Accented 74.1 0.768
Mean 84.0 0.837

CRFs
ASCCD
Unstressed 81.8 0.819
Stressed 70.9 0.707
Mean 77.6 0.776
BURNC
Unaccented 91.0 0.901

Accented 80.0 0.813
Mean 87.2 0.872

6.2.2. The Mandarin stress detection and English pitch accent detection with syntactic-stress model
For lexical and syntactic features, we utilize three different classifiers: decision tree, SVM and CRFs. Table 7

shows the performance of various syntactic-stress models on ASCCD and BURNC. From Table 7, we can find the
performances of decision tree model, SVM model, and CRFs model on ASCCD are not as good as in English pitch
accent detection on BURNC. The CRFs classifier achieves relatively better results than decision tree classifier and
SVM classifier on BURNC.

6.2.3. The Mandarin stress detection and English pitch accent detection with combined model
Table 8 shows the performance of various combined models.
In Table 8, Boosting CART* classifier and CRFs* classifier are obtained by using the acoustic, lexical and syntactic

features, and are not obtained by weighting combination through Eq. (12). The combined model “NN/decision tree”
means that the acoustic-based features are modeled by NN, and the lexical-based and syntactic-based features are
modeled by decision tree. The “NN/SVM” and “NN/CRFs” are similar.

In Table 8, the value of λ in Eq. (12) ranging from 0.5 to 1.5 has a good effect, and can fuse the classification results
of the acoustic-stress classifier and the syntactic-stress classifier. The λ of the combined models “NN/decsion tree”,
“NN/SVM” “NN/CRFs” on ASCCD corpus are 0.5, 1.5 and 0.6. The λ of the combined models “NN/decsion tree”,
“NN/SVM” “NN/CRFs” on BURNC corpus are 1.1, 1.5 and 0.7. The value of λ is tuned on the training set.

From Table 8, we can find that (1) the combination of different knowledge obtains better performance than each
alone for all classifiers; (2) the Boosting CART classifier can provide the best classified efficiency on ASCCD, and the
CRFs classifier can provide the best classified efficiency on BURNC; and (3) all classifiers used in Mandarin stress

detection do not achieve the same as in English pitch accent detection.

Now, we can obtain a new classifier “Boosting CART* + CRFs*” by weighting combination of the Boosting CART*
classifier and CRFs* classifier according to Eq. (16). The value of w in Eq. (16) is 1 on ASCCD and BURNC. This
means that the weight in Eq. (14) is 0.5. We also find that the choice of weight is related to the performance of different
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Table 8
The performance of various combined models on ASCCD and BURNC.

Accuracy rate (%) F-measure

NN/decsion tree
ASCCD
Unstressed 82.3 0.836
Stressed 74.3 0.724
Mean 79.3 0.793
BURNC
Unaccented 88.6 0.907
Accented 84.9 0.806
Mean 87.3 0.874

NN/SVM
ASCCD
Unstressed 83.4 80.8
Stressed 68.3 71.4
Mean 77.6 77.3
BURNC
Unaccented 88.9 0.902
Accented 82.7 0.802
Mean 86.8 0.869

NN/CRFs
ASCCD
Unstressed 82.3 0.836
Stressed 74.5 0.724
Mean 79.3 0.794
BURNC
Unaccented 91.8 0.921
Accented 85.0 0.845
Mean 89.5 0.895

Boosting CART*
ASCCD
Unstressed 82.5 0.840
Stressed 75.3 0.729
Mean 79.7 0.798
BURNC
Unaccented 92.1 0.913
Accented 82.4 0.836
Mean 88.8 0.887

CRFs*
ASCCD
Unstressed 83.2 0.835
Stressed 73.7 0.732
Mean 79.6 0.796
BURNC
Unaccented 93.0 0.922
Accented 83.9 0.852
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Mean 89.9 0.898

lassifiers. If the performance of one classifier is better than the other classifier, the weight in Eq. (12) or (14) is greater
han 0.5; if the performance of one classifier is equal to the other, the weight in Eq. (12) or (14) is about 0.5. When
sing “Boosting CART* + CRFs*” classifier to detect Mandarin stress and English pitch accent, this classifier yields
1.1% stress detection accuracy rate on ASCCD and 90.8% pitch accent detection accuracy rate on BURNC at syllable
evel. Table 9 lists the Mandarin stress and English pitch accent detection results.
From Table 9, we can find that the performance of the model by combining Boosting CART* model with the
RFs* model based on acoustic, lexical and syntactic features is better than Boosting CART* or CRFs* model alone.
n ASCCD and BURNC, there are 1.8% and 3.5% improvements, respectively, when compared with their baseline

ystem.
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Table 9
The performance of our proposed classifier combination on ASCCD and BURNC.

Accuracy rate (%) F-measure

Baseline (NN/decision tree)
ASCCD
Unstressed 82.3 0.836
Stressed 74.3 0.724
Mean 79.3 0.793
BURNC
Unaccented 88.6 0.907
Accented 84.9 0.806
Mean 87.3 0.874

Boosting CART* + CRFs*
ASCCD
Unstressed 86.3 0.849
Stressed 72.6 0.746
Mean 81.1 0.810

BURNC
Unaccented 93.8 0.929

Accented 85.1 0.866
Mean 90.8 0.908

On ASCCD, we also compare the performances of ours with the previously correlative Hu’s work under the same
conditions (same training sets Tr1 and Tr2, same testing sets T1 and T2) [17]. Tr1 is made of the first 12 utterances
from the speaker M001. There are 12 utterances in training set Tr1. Tr2 is made of the first 12 utterances from all
speakers. There are 120 utterances in training set Tr2. T1 contains the last 6 utterances from the speaker M001. There
are 6 utterances in testing set T1. T2 contains the last 6 utterances from all speakers. There are 60 utterances in testing
set T2. In ASCCD corpus, each utterance contains 3–8 sentences. The experimental results are listed in Table 10. There
are 2.16% and 0.95% absolute accuracy rate improvements to T1 and T2, respectively. In Table 10, we quote Hu’s
experimental results directly.

On BURNC, we also compare the performance of ours with the previous related work. When compared with Jeon’s
work [10], there is 1% absolute accuracy rate improvement; and when compared with Ananthakrishnan et al.’s work
[9], there is 4.05% absolute accuracy rate improvement.

6.2.4. The further verification of our proposed classifier combination
In order to verify efficiency of our proposed method and performance of annotating the other speech further, we

also conduct experiments on the other Mandarin corpus. First, we conduct experiments on other Mandarin corpus with
prosodic annotation. Second, we conduct experiment on the Mandarin continuous speech corpus, which is not labeled
with prosody.

6.2.4.1. On the Mandarin prosodic annotation corpus. On the Mandarin prosodic annotation corpus—Coss-1, we
verify our proposed method. The features used in the experiment and the setting of the experiment are the same as in
the experiment on the corpus—ASCCD. Table 11 lists the experiments on Coss-1 corpus.
From Table 11, we can find that our proposed classifier combination method achieves the best experimental results.
When compared with the baseline system, our proposed method has 1.7% absolute accuracy rate improvement. Through
the experiments on Coss-1 corpus, we can find that our proposed method is robust. In Table 11, the accuracy rate of our

Table 10
The correct rate using acoustic and text features in test set T1 and T2.

T1 T2

Boosting CART* + CRFs* 86.36 81.95
Proposed method by Hu [17] 84.20 81.00
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Table 11
The experimental results of various combined models on the Coss-1 corpus.

Accuracy rate (%) F-measure

Baseline (NN/decision tree)
Unstressed 94.1 0.929
Stressed 72.6 0.756
Mean 89.1 0.889

NN/SVM
Unstressed 93.6 0.905
Stressed 56.5 0.636
Mean 84.9 0.845

NN/CRFs
Unstressed 94.1 0.923
Stressed 67.7 0.724
Mean 87.9 0.877

Boosting CART*
Unstressed 95.1 0.935
Stressed 72.6 0.769
Mean 89.8 0.897

CRFs*
Unstressed 94.6 0.923
Stressed 66.1 0.719
Mean 87.9 0.877

Boosting CART* + CRFs*
Unstressed 94.1 0.94
Stressed 80.2 0.807
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Mean 90.8 0.908

roposed method is 90.8%, which is higher than that of on ASCCD and BURNC. From the experiments on ASCCD
nd BURNC, we can find that the accuracy rate of our proposed method on ASCCD is lower than that of on BURNC.
his also indicates that the corpus utilized in the evaluation has a significant impact on the Mandarin stress or English
itch accent detection rate in both languages.

.2.4.2. On the Mandarin continuous speech corpus. We also verify our proposed method on Mandarin continuous
peech corpus (“863” corpus). First, we extract pitch, intensity and energy between 500 Hz and 2000 Hz from the
peeches with the help of Praat. The setting of Praat is the same as in ASCCD corpus. Second, with the help of
utomatic speech recognition system, all speeches are aligned in order to get time boundary of each syllable. With
he help of Stanford Chinese word segmentation and Stanford postagger, we get POS tag information of each text file
hich contains Chinese characters. Third, we compute the acoustic, lexical and syntactic features listed in Section
. Finally, we utilize the model acquired on ASCCD corpus using our proposed method to annotate the stress status
f each syllable in each file in the “863” continuous speech corpus. We have annotated all sentences in the speech
orpus. In order to verify our automatic labeling methods, we randomly select 120 sentences of 6 speakers to annotate
anually. Each sentence is annotated by three persons. We consider the syllable is stressed, if it is annotated to stress
y at least two persons. We consider the syllable is unstressed, if it is not annotated to stress by at least two persons.
uppose that the manual annotation is right, and then we can get the accuracy rate. Table 12 lists the experimental
esults on the 120 sentences at syllable level.

able 12
he annotation results on part of Mandarin continuous speech corpus.

Accuracy rate (%) F-measure

nstressed 94.4 0.957
tressed 96.8 0.954
ean 95.5 0.956
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From Table 12, we can find that (1) our proposed annotation method is effective. (2) The experimental results on
“863” corpus are better than on ASCCD corpus. I think that the following two reasons would lead to this phenomenon.
The first one may lie in different speech style. “863” corpus is read-style speech corpus, and the speed of speech is
moderate. Each of wave file in “863” corpus is a sentence. Though ASCCD corpus is read-style speech, there are lots
of extra phenomena. The duration of speech wave file in ASCCD corpus is longer than that in “863” corpus, and there
is long-standing silence between some syllables. Each utterance in ASCCD corpus consists of several sentences. The
speed of speech in ASCCD corpus is faster than that in “863” corpus. The second reason may lie in the amount of manual
annotation data. Because of time-consuming to annotate prosody manually, we only annotate seldom speech data, only
120 sentences. In “863” corpus, there are 48,373 sentences. The ratio between the number of manual annotation data
and the number of all of speech data in “863” corpus is very low.

7. Feature analysis

Sluijter and van Heuven [23] believed that in English, duration was proved the most reliably correlative with stress.
Overall intensity and vowel quality were the poorest cues. Spectral balance, however, turned out to be a reliable cue,
close in strength to duration. Bolinger [37] hypothesized that features based on fundamental frequency (or pitch)
provide higher discrimination as compared to features based on duration and energy. Kochanski et al. got the following
conclusions through studying seven dialects of British and Irish English. Fundamental frequency played a minor role
in distinguishing prominent syllables from the rest of the utterance. Instead, speakers primarily marked prominence
with patterns of loudness and duration. All dialects and speaking styles studied in their studies shared a common
definition of prominence [38]. Silipo and Greenberg also got similar conclusions in the spoken American English.
Their conclusions were that fundamental frequency played a relatively minor role in the assignment of prosodic stress
in casually spoken American English, and that amplitude and duration were primary acoustic parameters associated
with the patterning of stress-relevant cues in spontaneous American English [39]. Rosenberg and Hirschberg detected
pitch accent at word, syllable and vowel level, and their experimental results indicated that a word-based approach is
superior to syllable- or vowel-based detection [40].

Chao [41] described that the formation of stress in Mandarin firstly involved expanding the tonal range and length-
ening the duration and secondly raising the air stream. But Shen [42] pointed out that intonation was used to realize
the sentence stress. Sentence stress and rhythmic stress would modify the top line and bottom line of tonal contours,
respectively. It was pitch rather duration that contributed more to sentence stress. Wang studied the relationship between
tone pattern and word stress in Mandarin. Her experimental results indicated that tone had something to do with the
engendering of the unstressed syllables at lexical level and with word stress pattern in continuous speech. When appear-
ing in the final position in a disyllable word, the syllable with the high level tone, for example tone 1, had the smallest
possibility to be unstressed at lexical level, and also made itself most prominent in perception. The syllable with the
low tone, for example tone 3, did the reverse [43].

In this section, we first analyze the function of duration, pitch, energy and intensity related features in Mandarin
stress detection and English pitch accent detection comprehensively, and then the importance of the single feature in
Mandarin stress detection and English pitch accent detection is examined one by one.

7.1. Different features group

We first utilize duration, pitch, energy, intensity, lexical and syntactic related features, respectively, to train corre-
sponding duration, pitch, energy, intensity, lexical and syntactic model on ASCCD and BURNC, and then use these
models to detect stress and pitch accent on ASCCD testing set and BURNC testing set. Table 13 lists the experimental
results.

From Table 13, we can find that (1) in Mandarin stress detection, the lexical and syntactic related features have
better performance in detecting stress than the acoustic related features. In English pitch accent detection, the lexical
and syntactic related features also have better performance in detecting pitch accent than that of the acoustic related

features. (2) In Mandarin stress detection, for the acoustic related features, the duration related features prove the
most reliable features, what follows are the intensity related features, the pitch related features, and the energy related
features. For English pitch accent detection, the energy related features provide high discriminations, and the pitch
related features do not provide higher discrimination than the energy related features. This phenomenon is also similar
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Table 13
The pitch, duration, energy and intensity related information make contribution to stress and pitch accent detection.

Accuracy rate (%) F-measure

Duration
ASCCD 72.7 0.730
BURNC 73.7 0.736

Intensity
ASCCD 69.2 0.695
BURNC – –

Pitch
ASCCD 69.0 0.693
BURNC 74.2 0.746

Energy
ASCCD 67.2 0.673
BURNC 76.6 0.768

Lexical and syntactic
ASCCD 78.8 0.789
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BURNC 87.4 0.874

o the previous related work [38,39]. (3) In Mandarin stress detection, if we only use the duration or pitch or energy
r intensity separately to detect syllable stress, the correct rate of stress detection is low. This also states that stress
s a complicated language phenomenon. The single acoustic feature has little effect on Mandarin stress detection. In
nglish pitch accent detection, the duration related features are important, and also provide better discrimination to
itch accent than other acoustic related features.

.2. Single feature

In order to inspect the performance of single feature in stress or pitch accent detection more precisely, we first
mplement the detection tasks by using single feature, respectively, and then rank these features in descending order
ccording to the detection accuracy rate. It is obvious that the more important in stress or pitch accent detection, the
igher in the rank.
Table 14 lists the results of some features for Mandarin stress detection.
From Table 14, we find that the features, which are related with syllable position in the Chinese character, are

mportant to Mandarin stress detection. The duration related features, such as the type of the silence between the

able 14
he rank of features according to the correct rate in Mandarin stress detection.

ank Description of features Accuracy (%)

1 Unigram probability 70.33
2 The ratio between the position of the current syllable in the word and the length of the word 70.03
3 The duration of the silent pause between the current syllable and previous syllable 69.81
4 Number of syllables to the end of the current word boundary 68.12
5 Whether the current syllable is the boundary of word or not 68.10
6 Reverse joint probability 67.37
7 Joint probability 67.28
8 Bi-gram probability 67.09
9 Reverse Bi-gram probability 66.54
0 The type of the silence between the current syllable and previous syllable 65.81
1 The syllable with tone or the index of the syllable with tone 65.60
2 The standard deviation of intensity in the syllable 64.56
3 The mean of pitch in the syllable 64.46
4 The maximum pitch in the syllable 64.28
5 The ratio between duration of the current syllable and duration of the following syllable 64.26
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Table 15
The rank of features according to the correct rate in English pitch accent detection.

Rank Description of features Accuracy (%)

1 Whether the syllable has lexical stress or not 79.82
2 The duration of the syllable 73.70
3 The maximum energy of the syllable 71.88
4 The 3th coefficient of pitch contour Legendre polynomial expansion 71.04
5 The PosTag of the previous syllable of the current syllable 69.15
6 The energy range of the syllable 68.80
7 The 3th coefficient of energy contour Legendre polynomial expansion 68.04
8 The 1th coefficient of energy contour Legendre polynomial expansion 68.01
9 The following syllable 67.58

10 The 4th coefficient of pitch contour Legendre polynomial expansion 67.06
11 The syllable 66.96
12 The mean pitch of the syllable 66.95
13 The minimum pitch of the syllable 66.95

14 The 5th coefficient of pitch contour Legendre polynomial expansion 66.77
15 The 0th coefficient of energy contour Legendre polynomial expansion 66.70

current and previous syllable, are also important to this task. From Table 14, we still can find that the probability
related features are important in detecting Mandarin stress.

Table 15 lists the result of some features for English pitch accent detection.
From Table 15, we can find that (1) in the listed 15 features, there are 11 acoustic related features and 4 lexical and

syntactic related features. (2) Whether the syllable has lexical stress or not is also important in English pitch accent
detection. (3) The duration of syllable provides very high discrimination in English pitch accent detection. (4) The
maximum energy of the syllable is also important in English pitch accent detection.

Finally, we can summarize this section. From the feature analysis in detections of Mandarin stress and English pitch
accent, the similarity between them is that the lexical and syntactic related features are important to them. For example,
in Mandarin stress detection, the probability related features and the features which are related with syllable position
in Chinese characters are important; and in English pitch accent detection, whether the syllable has lexical stress or
not is important features. It is very reasonable that the lexical and syntactic features yield high accuracy rate on the
BURNC and ASCCD because speech is constrained by the text contents. In Mandarin, most Chinese characters are
monosyllable and disyllable, and the syllable position in Chinese characters has a greater relationship with Mandarin
stress. Similarly, English pitch accent also has a greater relationship with the lexical stress, and the mutual information
between the feature bLexical and the classification label is 0.243.

The difference between Mandarin stress detection and English pitch accent detection is that the acoustic related
features in English pitch accent detection provide higher discrimination than that of in Mandarin stress detection. (1)
The duration related features are important both to Mandarin stress detection and English pitch accent detection. The
ratio between the duration of the finals of current syllable and the previous syllable and the duration of the silent pause
between the current syllable and the previous syllable are important in Mandarin stress detection. In Mandarin, duration
is often used to mark stress. According to the statistics on ASCCD, we find that there often exists silence before the
stressed syllable, which can explain why the feature durSilCurPre (the duration of the silent pause between the current
syllable and the previous syllable) is important. This also illustrates that the probability is big that the first syllable is
stressed after silence. The feature ratioDurCurPre (the ratio between the duration of current syllable and the duration
of previous syllable) indicates that Mandarin stress is realized mainly by some attribution comparison between the
current syllable and the following or the previous syllable, such as the duration comparison and pitch comparison. For
some syllables, the stress may be realized by the duration comparison, and for others, the stress may be realized by the
pitch comparison. The duration of the syllable is important in English pitch accent detection, and the duration of the
syllable in Mandarin stress detection provides minor discrimination when compared with the duration of the syllable

in English pitch accent detection. According to the statistics on BURNC, the accented syllables often have the longer
duration than the unaccented ones. (2) The pitch related features provide minor discrimination in both Mandarin stress
detection and English pitch accent detection when compared with the duration related features in both Mandarin stress
detection and English pitch accent detection. Of all pitch related features, the mean pitch and the maximum pitch of
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Fig. 1. The mutual informatin comparison in ASCCD and BURNC.

he syllable are relatively more important in Mandarin stress detection. Of all pitch related features, the mean pitch of
he syllable and some coefficients of pitch contour Legendre polynomial expansion are relatively more important in
nglish pitch accent detection. From these comparisons, we can find that the mean pitch of syllable, maximum pitch
f syllable or some coefficients of pitch contour Legendre polynomial expansion are more important when compared
ith the other pitch related features. This also indicates that the stress or pitch accent is realized by increasing the pitch
alue of syllable and elevating the position of pitch curve. (3) In Mandarin stress detection, the energy related features
n special frequency band do not provide higher discrimination than the duration, pitch and intensity related features.
f all energy related features, the maximum energy of the syllable and the some coefficients of the energy contour
egendre polynomial expansion are important in English pitch accent detection. In English pitch accent detection, the
nergy related features provide higher discrimination than the duration and pitch related features. For the accented
yllables, their energy ranges are expanded, and their energy maximum are enhanced.

. Discussion

Although we provide more features and higher model complexity in Mandarin stress detection than that in English
itch accent detection in the experiments, we can find that the accuracy rate of Mandarin stress detection is usually
ower than that of English pitch accent detection. In Section 7, we have made comparison between Mandarin stress
etection and English pitch accent detection based on feature analysis. Now, we make comparison between Mandarin
tress detection and English pitch accent detection further. We will compare the differences and similarities between
hem from the following different aspects.

.1. From the mutual information

In order to compare the differences and similarities across languages, we compute the mutual information between
he feature and the classification label to measure the discrimination of features used in Mandarin stress and English
itch accent detection.

In Mandarin stress detection, the sylID (the syllable with tone) has the maximum mutual information value 0.178,
hile in English pitch accent detection, the sylID (the syllable) has the maximum mutual information value 0.549.
he maximum mutual information value in Mandarin stress detection is much smaller than that in English pitch accent
etection. Therefore, the features utilized in Mandarin stress detection have minor discrimination when compared with
he features utilized in English pitch accent detection. Fig. 1 shows some features utilized both in Mandarin stress
etection and English pitch accent detection.

In our experiments, the mutual information of most features, except very few, in ASCCD is lower than that in BURNC.

rom these analyses, we can find that the features utilized in Mandarin stress detection have minor discrimination when
ompared with those utilized in English pitch accent detection.



146 C. Ni et al. / Computer Speech and Language 26 (2012) 127–148

8.2. From the corpus

On Mandarin ASCCD corpus and English BURNC corpus, we have conducted the comparison experiments between
Mandarin stress detection and English pitch accent detection systematically. Now, we analyze these two corpora.

Table 3 lists the stressed syllable distribution of different speakers in ASCCD corpus. From the table, we can find
that: (1) the untoned syllable has more stability, which means that all speakers have almost the same pattern in terms
of the untoned syllables; (2) whether the syllable is stressed or not is different from individual to individual. The size
of the set, which consists of the unstressed normal syllable by all 10 speakers, is 1174, and the size of the set, which
consists of the stressed syllable by all 10 speakers, is 682. Table 2 shows that there are 33,930 stressed syllables in
ASCCD corpus. Therefore, for every speaker, there are about 3393 stressed syllables. That is, there are at least 2711
(3393 − 682 = 2711) syllables which can be stressed or unstressed for every speaker. From Table 2, we know that there
are 87,586 syllables in the corpus. That is, every speaker speaks about 8758 syllables, so we can find that almost 30%
(2711/8758) syllables can be stressed or unstressed for every speaker. Which syllables are stressed or unstressed is not
strictly fixed in Mandarin. The ToBI system has the advantage that it can be used consistently by labelers for a variety
of styles [46], and Ostendorf et al. had made study about labeler consistency on a set of three storeys containing 1002
words based on BURNC [20]. They found agreement on presence versus absence for 91% of the words. On those 487
words that were marked by both labeling groups with an accent, there was 60% agreement on accent type with most
of the disagreements occurring for the difficult L + H* versus H* distinction. When the H* was grouped together with
the L + H* as in [46], there was 81% agreement on pitch accent type.

8.3. From the language

There are two differences in stress between Mandarin and English.
One is that Mandarin Chinese is a tonal language, but English is not. Mandarin is a tonal language, in which tone

plays an important phonemic role. Each syllable in Mandarin corresponds to a morpheme (ideographic character) and
is associated with a pitch tone. The pitch curve in Mandarin embraces tone, stress and intonation information, and
cannot be freely used to mark stress. The acoustic evidence of stress comes from duration, pitch, spectrum tilting and
intensity related information. The relations of these features are rather complicated. English is not a tonal language,
but a lexical-stress language. There is a strong correlation between whether the lexical-stress exists or not and whether
the syllable is stressed or not.

The other is that most Chinese characters are monosyllable but most English words are polysyllabic. According to
Wang [44], there are some 30,000 disyllabic compounds in a large dictionary of standard Chinese, and just about 2000
are clearly heavy–light (the rest are either heavy–heavy or optionally heavy–heavy) disyllabic structure. The stress is
clear in disyllabic Chinese characters with heavy–light structure. In contrast to English, there are about 13% of the
words to be monosyllabic (based on a basic lexicon of 52,447 words) [45], and so most cases are that English words
have heavy–light structure (one pitch accent in a polysyllabic word). The cases that English words have heavy–heavy
structure are far less common (heavy–heavy with two pitch accents).

9. Conclusion and future work

In this paper, we select a novel classifier combination method, which is the combination of boosting classification
and regression tree (CART) classifier and conditional random fields (CRFs) classifier, to detect Mandarin stress and
English pitch accent, verify efficiency of our proposed method on the prosodic annotation corpus and continuous
speech corpus, and compare performances with several different kinds of classifier and classifier combination model.
We also analyze the function of the duration, pitch, energy and intensity features in Mandarin stress detection and
English pitch accent detection, and comprehensively compare the differences and the similarities between Mandarin
stress detection and English pitch accent detection. We also verify some linguistic conclusions based on the analysis

of large corpora. In the future, we will refine the features and models, and exploit more methods to model acoustic,
lexical and syntactic features. We will utilize the prosodic annotation continuous speech corpus to train prosody aided
phone model, and build prosody aided speech recognition system in order to integrate prosodic information to improve
the performance of speech recognition system.
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