
A New Algorithm for Compressing Massive Region-of-Interest Location Information
in Videos

Mingliang Chen1, Weiyao Lin1, Xiaozhen Zheng2, Xu Chen2

1Department of Electronic Engineering, Shanghai Jiao Tong University, China
2Research Department of Hisilicon Semiconductor and Component Business Department, Huawei Technologies, China

Abstract
Region-of-Interest (ROI) location information in videos

is of increasing importance in many applications including
user interest analysis and user experience improvement.
Although ROI-based coding has been studied by many
researchers, most of the works only focus on using the ROI
information for improving coding efficiency while the ROI
location information itself is seldom coded or transmitted.
Though some methods can recover the ROI locations at the
decoder by some parameters such as the quantization
parameter, they will fail to work when the number of ROIs
becomes large or the ROIs become overlapping. In this paper,
we propose a new algorithm to compress this massive ROI
location information in videos. The proposed algorithm
introduces the region position information extracted from the
reconstructed frame as the reference to reduce the ROI
location data. Furthermore, the temporal correlations among
ROIs in neighboring frames are also utilized for compressing
the ROI locations. By suitably integrating the extracted
region position as well as the temporal correlation, the
proposed algorithm can reduce the data by about 20% for
videos with 30 ROI regions. Experimental results
demonstrate the effectiveness of the proposed algorithm.

I. Introduction

Region-of-Interest (ROI) location information in videos
is of increasing importance in many applications [1-4, 11].
For example, the ROI locations estimated from user eye gaze
can be used to analyze the changes of user interests when
viewing a video. In video conference applications, the
identified ROIs can be used to guarantee the video qualities
of the interest regions in order for improving the user
experiences. Furthermore, the ROI locations of cars and
pedestrians in surveillance videos can also be used for event
analysis and abnormality detection [11].

Various ROI-based coding methods have been developed
[2-5]. Chen et al. [2] use robust skin-color detection to
obtain ROI position information for efficient coding. Menser
et al. [3] analyze the video contents by face detection &
tracking and apply them into the application of ROI coding.
Hu et al. [4] divide one frame into three different region
types and then perform rate control by allocating more bits
to those interest region types. Arachchi et al. [5] also
separate the video frame into different interest regions for
achieving unequal error protection in video streams.
However, most of these methods only focus on using the
extracted ROIs for improving the coding efficiency while
few works try to code and transmit the ROI location
information itself. Although some methods [4] can recover
the ROI locations at the decoder by some parameters such as
the quantization parameters (e.g., macroblocks (MBs) with
different quantization parameters can be classified into
different ROIs in Hu’s method [4]), they will fail to work
when the number of ROIs becomes large or the ROIs

become overlapping. Moreover, although some object-based
coding schemes such as MPEG-4 [10] have the functionality
for encoding the object information in videos, the problem of
coding the massive ROI location information is still seldom
addressed. Therefore, it is important to develop new
algorithms to encode these ROI location data.

We assume that ROIs are circled by rectangles as shown
in Fig 1. And our task is to encode and transmit the sizes and
locations of these rectangles to the decoder. One
straightforward way to do this is to directly transmit the
rectangle’s height, width, and (x, y) coordinates. This simple
method can work when there are only a couple of ROIs in
the video. However, when the number of ROIs becomes
large (e.g., the number of interested objects will become
large for surveillance or conference videos), these ROI
location data will become huge and non-negligible. For
example, according to our experiments, the ROI location
data will take about 15% of the total bits for a video with
about 15 ROIs. Therefore, new algorithms are required to
efficiently compress these huge ROI location data.

(a) (b)

Fig. 1 Some example ROIs in videos (The areas in red rectangles are ROIs).

In this paper, we propose a new algorithm to compress
the massive ROI location information in videos. The
proposed algorithm introduces the region position
information extracted from the reconstructed frame as the
reference to reduce the ROI location data. Furthermore, the
temporal correlations among ROIs in neighboring frames are
also utilized for compressing the ROI location data. By
suitably integrating the extracted region position as well as
the temporal correlation, the proposed algorithm can
efficiently reduce the ROI location data while the original
location data values are kept exactly the same.

The rest of the paper is organized as follows: Section II
describes the framework of our proposed ROI location data
compressing algorithm. Section III describes the details of
the key components of our proposed algorithm. The
experimental results are given in Section IV. And Section V
concludes the paper.

II. The Framework of the Proposed Algorithm
The framework of our proposed ROI location data

compression algorithm is shown in Fig. 2.
At the encoder side (i.e., the left of Fig. 2), given the

current input video frame, the ROI locations in the current
frame are first extracted by the “ROI extraction or tracking”
step. At the same time, the original video frame will be
encoded by the video encoder such as H.264. The bitstreams
of the video encoder will be further decoded by the “local
virtual video decoder” to create the reconstructed frame.
Then, an “object or interest region detection” process will be
applied to achieve the possible interest objects and regions in
the reconstructed frame. Since many of the interest regions
extracted from the reconstructed frame may be the same as
the ROIs being coded, they can be used as the reference to
reduce the ROI location data. Furthermore, the ROI
locations from the previous frame can also be recovered by
the “local ROI location decoder” and these previous ROI
locations will also be used as another reference to reduce the
ROI locations of the current frame. Finally, the “ROI
Location Information Encoding” module will take “the
interest regions from the reconstructed frame” as well as
“the ROI locations from the previous frame” as the reference
to encode the ROI location data of the current frame. And
the resulting ROI location bitstream will be added together
with the bitstream of the frame as the final output bitstream.

Similarly, at the decoder side (i.e., the right of Fig. 2),
the interest regions from the reconstructed frame and the
ROI locations of the previous frame are first extracted. Then,
based on these extracted information, the ROI locations of
the current frame can be recovered from the ROI location
bitstream.

Several things need to be mentioned about Fig. 2. They
are described in the following:
(1) In our proposed algorithm, we introduce two reference

information to reduce the ROI location data of the
current frame. Firstly, as many of the ROIs are extracted
by object detection or tracking methods, we propose to
apply the same methods on the reconstructed frame to
extract the possible interest regions or interest objects.
Since the reconstructed frames are visually similar to
the original frames, many of the interest regions or
objects from the reconstructed frame are the same as the
ROIs from the original frame. Thus, by using these
interest regions in the reconstructed frame, the ROI
location data can be reduced. Secondly, since the ROI
locations have high correlation in neighboring frames
(e.g., the locations of the person-head ROI in Fig. 1 (a)
are similar in different frames), we also use the previous

frame’s ROI locations to help reduce the ROI location
data in the current frame.

(2) Note that both the interest regions from the
reconstructed frame and the ROI locations from the
previous frame can be achieved at the decoder side.
Thus, our proposed algorithm can be effectively
recovered at the decoder without any data loss (i.e., the
recovered ROI locations are exactly the same as the
original ones from the encoder).

(3) As for ROI extraction and tracking, in our experiments,
we use CT-based method [7] and Adaboost-based
method [8] to extract ROIs. Similarly, we also use the
same CT-based and Adaboost-based methods [7-8] to
detect the possible interest regions in the reconstructed
frame. However, note that the framework of our
proposed algorithm is general and various other object
detection methods can be used to achieve the ROIs and
interest regions.

(4) When combining the ROI location bitstreams and frame
bitstreams, we view the ROI location bits as the header
bit and put them together with the other header bits in
the frame bitstream. By this way, the ROI location
information can be flexibly compatible with the existing
bitstream formats.

(5) In Fig. 2, the “ROI location information encoding” and
the “ROI location information decoding” modules are
the key contributions in this paper. In these modules, we
introduce various modes such as the differential mode
and the skip mode to reduce the input ROI location data.
And the details of these modules will be described in the
following section. More specifically, since the decoding
process can be easily derived from the encoding process,
we will only focus on discussing the “ROI location
information encoding” module in the following section.

III. The Process of the ROI Location Information
Encoding

In this paper, we define the position information of one
ROI as:

{ }iiiii h,w,y,xR = (1)

where Ri is the i-th ROI in the frame. xi and yi are the
horizontal and vertical coordinates of the top-left corner
pixel of ROI Ri. And wi and hi are the width and height of the

Reconstructed
Frame

ROI Locations of the

Previous Frame

Video

Encoder

 Bitstreams of

the Frame

Object or Interest

Region Detection

ROI Location

Information Encoding
Bitstreams of the

ROI Locations

Local Virtual

Video Decoder

ROI extraction

or tracking

ROI Locations of
the Current Frame

Extracted Region
Locations from the

Reconstructed Frame

Input Video Frame

Local ROI Location

Decoder

 Bitstreams of

the Frame

Object or Interest

Region Detection

Bitstreams of the

ROI Locations

Video Decoder

Reconstructed

Frame

ROI Location

Information Decoding

Extracted Region Locations from
the Reconstructed Frame

ROI Locations of the

Previous Frame

Output

Bitstream

Encoder Decoder

ROI Locations of

the Current Frame

Fig. 2 The framework of the proposed ROI location data compression algorithm.

ROI Ri, respectively. By the above definition, we can
describe the process of our ROI location information
encoding process by Fig. 3.
 From Fig. 3, there are mainly five steps in the ROI
location encoding process. (1) For all the ROIs in the current
frame, their corresponding ROIs in the previous frame and
the reconstructed frame are first searched and matched. (2)
Then these ROIs are organized in a proper order to be
written into the bitstreams. (3) When writing the bitstreams,
we first write the number of all differential-coded ROIs
(NDC) and the number of all “existing” differential-coded
ROIs (NEDC, i.e., the ROIs that do not newly appear in the
current frame and whose locations are differential-coded) to
indicate the ROI numbers. (4) Then, the existing ROI
locations in the current frame are written into the bitstream
where four modes are used to encode the existing ROIs:
differential mode, disappear skip mode, temporal skip mode,
and reconstructed skip mode. (5) Finally, the
newly-appeared ROIs are written into the bitstream where
two modes are used to encode these new ROIs: the
differential mode and the reconstructed skip mode.
 In the following, we will describe these five steps in
detail.

A. Searching the corresponding ROIs in the previous and
reconstructed frames

In the first step, we need to find the corresponding ROIs

in the previous frame and the reconstructed frame for each
ROI in the current frame. In this paper, we use different
ways to find the corresponding ROIs for previous frame and
reconstructed frame, respectively.

For the previous frames, the tracking method [9] is used
to match the ROIs in the current frame with the ones in the
previous frame. Note that various other methods can also be
used to match the ROIs between the neighboring frames.
Furthermore, the temporal matching step will also handle the
ROI appear and disappear cases (i.e., an ROI will appear
when no corresponding ROI is found in the previous frame
and vice versa).

For the reconstructed frames, we first use the object
detection methods [8-9] to detect the possible interest
regions. Then, the one which has the largest overlapping
areas with the current ROI (i.e., the ROI in the current frame)
will be decided as the corresponding region of this current
ROI. This process can be described by Eqn. (2):

()
()()

⎪⎩

⎪
⎨
⎧

<

≥⎟
⎠
⎞⎜

⎝
⎛

=
OP

*
i

OP
*
ii

*

kR
*
i

TR if Null

TR if R,kROPmaxarg
R * (2)

where Ri is the ROI in the current frame, Ri

* is the decided
Ri’s corresponding region in the reconstructed frame. R*(k) is
the k-th possible interest region in the reconstructed frame.
TOP is a threshold. OP(·) is the overlap area between two
regions and it can be calculated by:

()() () ()() ()()()

() ()() ()()()

y,kymaxhy,khkymin

x,kxmaxwx,kwkxminR,kROP
2

i
*

ii
**

2
i

*
ii

**
i

*

−+++

−++=
(3)

where the definitions of x, y, w, h are the same as in Eqn. (1).
 From Eqn. (2), we can see that if a possible interest
region R*(k) has the largest overlap area with the current
ROI Ri and the overlap area is larger than a threshold, it will
be decided as Ri’s corresponding region in the reconstructed
frame. Otherwise, no corresponding region will be decided
for Ri. And example is shown in Fig. 4.

Reconstructed frame

Ri
=R(1)

R*(3)

Current frame

Ri

R*(2)

Fig. 4 An example of finding the corresponding regions in the

reconstructed frame for ROI Ri.

B. Order the encoding sequence of ROIs
 After the correspondences are established for the ROIs in
the current frame, the encoding order for these ROIs needs
to be organized. In this paper, we first categorize the ROIs
into two types: the existing ROIs (i.e., the ROIs that have
corresponding ROIs in the previous frame) and the new
ROIs (i.e., the ROIs that do not have corresponding ROIs in
the previous frame and are the newly-appeared ROIs). Then,
these ROIs are organized by putting the existing ROIs first,
followed by the new ROIs. Furthermore, the order within the
existing ROIs will be the same as the one in the previous
frame. And the order within the new ROIs is organized by an

Fig. 3 The process of the ROI location information encoding module.

zig-zag order according their locations in the current frame.
To better illustrate this point, Fig. 5 gives an example.

Current frame Previous frame

R1’

R2’

R3’

R4’ R5’

R6’

R1

R3
R8

R4 R9

R6

R7

R1’ R2’ R3’ R4’ R5’ R6’ R1 R3 R4 R6 R7 R8 R9^ ^

New ROIs

Disappear

Fig. 5 An example of the ordering of ROIs in the current frame.

C. Write the number of all differential-coded ROIs and the
number of all existing differential-coded ROIs
 As mentioned, when writing the bitstreams, we first
write the number of all differential-coded ROIs (NDC) and
the number of all “existing” differential-coded ROIs
(NEDC). More specifically, NDC is the total number of
ROIs whose location data are coded by the differential mode.
And NEDC is the total number of existing ROIs (ROIs that
have corresponding ROIs in the previous frame) whose
locations are coded by the differential mode. Since our
algorithm has various skip modes, by transmitting these two
values, the distribution of different ROI coding modes can
be clearly indicated and the skip/differential modes for each
ROI can be effectively identified at the decoder. This point
will be further discussed in the example of Figs 7-8.

D. Encode the existing ROI locations
 After the NDC and NEDC are written into the bitstream,
the location data of the existing ROIs will be written into the
bitstream. In this paper, given the references from the
previous and the reconstructed frames, we develop four
modes for coding the existing ROI locations. They are
described in the following:
(1) The disappear skip mode. When an ROI disappears in

the current frame (i.e., there is ROI in the previous
frame but no corresponding ROI in the current frame,
such as R2

’ and R5
’ in Fig. 5), we need a mode to

indicate this situation. In this paper, we use a disappear
skip mode which writes “00” flag bits into the bitstream.
At the same time, the indicator skip_run will be
increased by one to indicate that one skip mode is coded
in the bitstream.

(2) The reconstructed skip mode. When the current ROI
locations are exactly the same as its corresponding
region in the reconstructed frame, we will not transmit
the locations of this ROI and simply use a reconstructed
skip mode (flag bits “01”) to indicate this. Similarly, the
indicator skip_run will be increased by one to indicate
that one skip mode is coded in the bitstream.

(3) The temporal skip mode. Similar to the reconstructed
skip mode, when the current ROI locations are exactly
the same as its corresponding region in the previous
frame, we will not transmit this ROI’s locations and
simply use a temporal skip mode (flag bit “1”) to
indicate this. And skip_run will be increased by one to
indicate the usage of one skip mode.

(4) The differential mode. If the current ROI locations are

neither the same as the previous frame nor as the
reconstructed frame, we will utilize a differential mode
to code the location differences between current ROI
and its corresponding ROI in the previous frame, as in
Eqn. (4).

{ }'ii
'
ii

'
ii

'
ii

'
iij,i hh,ww,yy,xxRRD −−−−=−= (4)

where Pi is the current ROI and Pi

’ is the corresponding
ROI in the previous frame. In our paper, the difference
values are coded by the Variable Length Coding (VLC)
scheme [1].

Reconstructed frame Current frame

Previous frame

R1’
R2’

R3’
R8’

R4’

R7’
R5’

R6’

R1
R2

R3
R8

R4

R7
R5

R6

R1*
R2*

R8*

R4* R5*

R6*

Differential mode

Temporal skip mode

Disappear skip mode

81 |00|1|1|1|00|01|6| RforBitsRforBits

Reconstructed skip mode

skip_run
skip-mode
flag seq.

Fig. 6 An example of coding the existing ROIs.

There are several things that need to be mentioned about
our existing ROI location coding step.
(1) In our algorithm, we introduce two skip modes

(reconstructed skip mode and temporal skip mode) to
skip transmitting the ROI locations when they are the
same as the reconstructed or previous frames.
Furthermore, even when the ROI locations are not the
same to their reference frame, the difference values are
transmitted. By this way, the ROI location data can be
greatly reduced.

(2) Note that when coding each ROI, the modes are
searched in a specific order for finding a suitable mode.
That is, for an input ROI, we first check whether it is
disappearing in the current frame (disappear skip mode),
then check whether it’s locations are the same as the
reconstructed frame (reconstructed skip mode) and the
previous frame (temporal skip mode), respectively.
Finally, when none of the above modes are coded, the
differential mode will be utilized to code the ROI
locations.

(3) Also, note that the skip mode bits are not written into
the stream directly. Rather, the skip mode bits as well as
the skip_run indicator will first be saved and updated in
a buffer and then written into the bitstream before the
next differential mode is coded. By this way, the
skip_run is able to accumulate the total number of skip
ROIs between two differential-coded ROIs.

Fig. 6 shows an example of coding the existing ROIs. In

Fig. 6, the first ROI R1 is differential coded. Then the

following ROIs (R2 - R7) are coded by different skip modes
(note that the crossed blocks for R3 and R7 mean that these
two ROIs do not appear in the current frame), and the bits
for these skipped ROIs will not written into the bitstream
until the next differential-coded ROI R8 is coded.

E. Encode the new ROI locations
The encoding of the new ROIs is similar to the

existing ROIs. In this paper, two modes are developed for
coding the new ROIs. They are described in the
following.
(1) The reconstructed skip mode. When the new ROI

locations are exactly the same as its corresponding
region in the reconstructed frame, we will use
reconstructed skip mode to skip coding its locations.
However, since there is only one skip mode for new
ROIs, we even do not transmit the skip mode flag and
only increase the skip_run indicator by 1 to indicate the
usage of one skip mode.

(2) The differential mode. If the new ROI locations are not
the same as the reconstructed frame, we will use
differential mode to code the location differences
between the new ROI and its corresponding region in
the reconstructed frame. The difference values will also
be coded by the VLC scheme.

To summarize the entire process of our ROI information

encoding module, a detailed example is given by Fig. 7.

Previous frame

R1’

R3’

R2’

100

100

(100,100)

(200,200)

100

100

(200,400) 200

100

Current frame

R1

R3

R4

100

100

(100,100) (150,150)

150

150

(199,399) 200

100

Reconstructed frame

R1*

R3*

R4*

100

100

(100,100)
(152,149)

150

150

(204,403) 201

98

R1

(100,100,100,100)

Reconstructed skip

(1)

R2

Disappear

 (00)

R3

(199,399,100,200)

Differential mode

(-1,-1,0,0)

R4

(152,149,150,150)

Differential mode

(-2,1,0,0)

Bits for the existing ROIs

skip_run:2 skip_run:0 skip_run:0 skip_run:0

Bits for the new ROIs

NDC NEDC

NDC and NEDC Bits

Fig. 7 An example of the entire ROI information encoding process.

In Fig. 7, the previous frame has three ROIs: R1

’, R2
’, and

R3
’. The current frame has three ROIs R1, R3, and R4 where

R4 is the newly-appeared ROI and R2 disappears in the
current frame. The corresponding regions in the
reconstructed frame are R1

*, R3
*, and R4

*, respectively. As
mentioned, when coding the current ROI locations, the NDC
and NEDC are first written into the bitstream, and then the
bits of the existing ROIs are written, followed by the bits of
the new ROIs. Thus, the final output bits of Fig. 7 can be
shown in Fig. 8.

From Fig. 8, we can see that (1) Since there are totally
two ROIs using differential coding mode (R3 and R4), NDC

equals to 2. Furthermore, since there is only one existing
ROI using the differential coding mode (R3), NEDC equals
to 1. (2) Note that the differential coding mode uses different
references for the existing and new ROIs. For the existing
ROIs such as R3, the ROIs in the previous frame is used
while the ROIs in the reconstructed frame are used for the
new ROIs such as R4, as shown in Fig. 6. (3) Also, note that
a “0” will be added at the ends of the existing ROI bits and
the new ROI bits respectively to indicate that there is no
further skip mode left.

{ {{ {

444 3444 21

43421

44444 344444 21

44342143421

4434421

321321

ROIs New

run
skipRfor difference

run
skip

ROIs Existing

run
skipRfor difference

R and R
for mode skip

run
skip

NEDC and NDC

NEDCNDC

| 0 |0|0|1|2| 0 | 0|0|0|1|1| 00 | 1 | 2 | 1 | 2 |
43

21

−−−

Fig. 8 The final output bits for the example of Fig. 7.

IV. Experimental Results
In this section, we show experimental results for our

proposed algorithm. The algorithms are implemented on the
H.264/MPEG-4 AVC reference software JM10.0 version [6].
For each of the sequences, the picture coding structure was
IPPP…. However, note that our proposed algorithm can also
be easily extended to other coding structures including B
frames.

Fig. 9 Some example video frames and the ROIs of our experimental
videos.

We collect several videos from the surveillance and the
conferencing videos. Some example video frames and the
corresponding ROIs are shown in Fig. 9. In our experiments,
four methods are compared.

(1) Direct. Directly write the absolute location values for

the ROIs into the bitstream.
(2) Differential. Write the difference of the ROI locations

in the current frame and the corresponding ROI
locations in the previous frame.

(3) Proposed. Using our proposed algorithm to encode the
the ROI locations in videos.

Furthermore, in order to show the relative importance of

the ROI location bits in the videos, we also include the bit
rates for the original videos (i.e., the bit rates by using H.264
to encode the videos and not including the bits for ROI
location, named as “Null” in Tables 1 and 2). In the
following, two experiments are carried out to demonstrate
the effectiveness of our proposed algorithm.

A. Results of Coding the Same Video with Different QP

In this experiment, we encode one QCIF-sized video
with different Quatization Parameters (QPs) ranging from 16
to 36. The number of frames to be encoded is 50, the frame
rate is 30 fps, and the average number of ROI per frame is 5.
The results are shown in Table 1.

In Table 1, the left part shows the total bit rates while the
right part shows the bit rates for the ROI locations only. Note

 Table 1 The Bit Rates of a Video with Different QPs
Total Bit Rates
(kbit/s) @30Hz

Bit Rates for the ROI Locations
(kbit/s) @30Hz QP

Null Direct Differential Proposed Direct Differential Proposed
16 915.48 920.52 917.64 916.70 5.04 2.16 1.22
20 497.84 502.88 500.00 499.08 5.04 2.16 1.24
24 255.46 260.50 257.63 257.03 5.04 2.16 1.57
28 124.54 129.58 126.69 126.22 5.04 2.16 1.68
32 61.73 66.77 63.89 63.51 5.04 2.16 1.78
36 36.19 41.23 38.36 38.03 5.04 2.16 1.84

Table 2 Bit Rates for Videos with Different Resolutions (QP = 28)
Bit Rate

(kbit/s) @30Hz
Bit Rate for the ROI Locations

(kbit/s) @30Hz seq. resolution ROI/
frame Null Direct Differential Proposed Direct Differential Proposed

I 176×144 4~6 124.54 129.58(+4.05%) 126.69(+1.73%) 126.22(+1.35%) 5.04 2.15 1.68
II 352×288 5~7 108.92 115.64(+6.17%) 111.57(+2.43%) 111.08(+1.98%) 6.72 2.65 2.16
III 176×144 5~7 97.67 103.67(+6.14%) 99.72(+2.10%) 99.47(+1.84%) 6.00 2.05 1.80
IV 864×480 14~17 132.76 152.20(+14.64%) 142.35(+7.22%) 141.71(+6.74%) 19.44 9.59 8.95
V 640×480 27~30 122.69 156.79(+27.79%) 137.84(+12.35%) 133.44(+8.76%) 34.10 15.15 10.75
VI 640×480 55~63 285.69 357.24(+25.04%) 313.75(9.82%) 305.09(+6.79%) 71.55 28.06 19.40

that since we use the same QP for comparison, the PSNR
values are the same for different methods and thus are not in
this table. From Fig. 1, we can see that if we use the direct
method to encode the videos, the bit rate for the ROI
locations is high. By using the differential method, the ROI
location rate can be reduced by more than half.
Comparatively, by using our proposed algorithm, the bit rate
can be further reduced by utilizing the reconstructed frame
information as well as the various skip modes. Also, note
that there are only ROIs in the video of Table 1 and the
improvement by our proposed method will be more obvious
when the number of ROIs becomes larger, as will be shown
in Table 2.

Furthermore, it can also be observed from Table 1 that
for the direct and differential methods, the ROI location rates
are the same for different QPs. This is because the ROI
locations and the ROIs’ temporal correlations are fixed in the
original videos and are not affected by the coding parameters.
Comparatively, since our proposed algorithm introduces the
reconstructed frame as references, the ROI location rates of
our algorithm are affected by the QP values. More
specifically, when the QP increases, the ROI location rate
will increase because the reconstructed video qualities will
decrease with larger QPs. And this will make the detection
results on the reconstructed frame less coherent with the
original ROIs, thus decreasing the number of ROIs being
skipped by the reconstructed skip mode. However, note that
even if our algorithm is affected by the QP parameters, our
method can still effectively reduce the ROI location bit
under large QPs. And the effect from QP parameters can be
reduced by utilizing more sophisticated detection algorithms.

B. Results for Different Videos with Different Resolution
In this sub-section, we conduct experiments on various

videos with different resolutions and different number of
ROIs. The QP is set to 28, the frame rate is 30 fps, and the
number of frames to be encoded is 50. The results are shown
in Table 2.

From the table 2, we can see that our proposed method
can obviously improve the coding efficiency. For example,
since the sequence IV has a large number of ROIs, if we use
the direct method, the bit rate for the ROI locations will take
about 15% of the total output bits. This is a heavy overhead
for video transmission. However, by using our proposed
method, the ROI location bits can be effectively reduced to
about 6.7%. Furthermore, comparing our method with the
differential method, we can see that the improvement of our

method is more obvious when the number of ROIs is large.
This implies that our proposed method is most effective
when coding the videos with massive ROIs, such as coding
the people trajectory information in a crowded scene and the
people head/hand movements in a remote education class.
Such scenarios have become popular and important in recent
applications.

V. Conclusion
In this paper, a new algorithm is proposed for

compressing the massive ROI position information in videos.
The proposed algorithm introduces the region position
information extracted from the reconstructed frame as the
reference to reduce the ROI location data. Furthermore, the
temporal correlations for ROIs in neighboring frames are
also utilized for compressing the ROI location data.
Experiments demonstrate the effectiveness of the algorithm.

Acknowledgements
This work was supported in part by the following grants: National

Science Foundation of China grants (61001146, 61103124), Huawei
Innovation Program grant (YB2012120150), the Open Project Program of
the National Laboratory of Pattern Recognition (NLPR), the SMC grant of
SJTU, Shanghai Pujiang Program (12PJ1404300).

References
[1] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra, “Overview of
the H.264/AVC video coding standard,” IEEE Trans.CSVT, 2003.
[2] M.-J.. Chen, M.-C. Chi, C.-T. Hsu and J.-W. Chen, “ROI Video Coding
Based on H.263+ with Robust Skin-color Detection Technique,” IEEE
Trans. Consumer Electronics, vol. 49, pp. 724-730, 2003.
[3] B. Menser and M. Brunig, “Face Detection and Tracking for Video
Coding Applications,” IEEE Int’l Conf. Signal, Systems and Computers, vol.
1, pp. 49-53, 2000.
[4] H.-M. Hu, B. Li, W. Lin, W. Li and M.-T. Sun, “Region-Based Rate
Control for H.264/AVC for Low Bit-Rate Applications,” IEEE Trans.
Circuits and Systems for Video Technology, vol. 22, pp. 1564-1576, 2012.
[5] H. Arachchi, W. Fernando, S. Panchadcharam, and W. Weerakkody,
“Unequal Error Protection Technique for ROI Based H.264 Video Coding,”
Int’l Conf. Electrical and Computer Engineering, pp. 2033–2036, 2006.
[6] JM 10.0, 0H0Hhttp://iphome.hhi.de/suehring/tml/download/old_jm/.
[7] J. Wu, C. Geyer, and J. M. Rehg, “Real-Time Human Detection Using
Contour Cues,” IEEE Int'l Conference on Robotics and Automation, 2011.
[8] P. Viola, M. Jones, “Robust real-time object detection,” Int’l Journal of
Computer Vision, 2001.
[9] G. Wu, Y. Xu, X. Yang, Q. Yan, K. Gu, “Robust object tracking with
bidirectional corner matching and trajectory smoothness algorithm,” Int’l
Workshop on Multimedia Signal Processing, pp. 294-298, 2012.
[10] T Sikora, “The MPEG-4 video standard verification model,” IEEE
Trans. Circuits and Systems for Video Technology, 1997.
[11] W. Lin, M.-T. Sun, R. Poovendran, Z. Zhang, "Activity recognition
using a combination of category components and local models for video
surveillance," IEEE Trans. Circuits and Systems for Video Technology, vol.
18, pp. 1128-1139, 2008.

