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Abstract. State-of-the-art systems of Chinese Named Entity Recogni-
tion (CNER) require large amounts of hand-crafted features and domain-
specific knowledge to achieve high performance. In this paper, we apply
a bidirectional LSTM-CRF neural network that utilizes both character-
level and radical-level representations. We are the first to use character-
based BLSTM-CRF neural architecture for CNER. By contrasting the
results of different variants of LSTM blocks, we find the most suitable
LSTM block for CNER. We are also the first to investigate Chinese
radical-level representations in BLSTM-CRF architecture and get better
performance without carefully designed features. We evaluate our system
on the third SIGHAN Bakeoff MSRA data set for simplfied CNER task
and achieve state-of-the-art performance 90.95% F1.

Keywords: BLSTM-CRF · Radical features · Named Entity
Recognition

1 Introduction

Named Entity Recognition (NER) is a fundamental technique for many nat-
ural language processing applications, such as information extraction, question
answering and so on. Carefully hand-crafted features and domain-specific knowl-
edge resources, such as gazetteers, are widely used to solve the problem. As to
Chinese Named Entity Recognition (CNER), there are more complicated proper-
ties in Chinese, for example, the lack of word boundary, the complex composition
forms, the uncertain length, NE nesting definition and so on [7].

Many related research regards NER as a sequence labelling task. The applied
methods on CNER include Maximum Entropy (ME) [3,20], Hidden Markov
Model (HMM) [8], Support Vector Machine (SVM) [19] and Conditional Ran-
dom Field (CRF) algorithms [7,10]. Character-based tagging strategy achieves
comparable performance without results of Chinese Word Segmentation (CWS)
[2,31], which means Chinese character can be the minimum unit to identify NEs
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Fig. 1. Decomposition of Chinese character

instead of words. Character-based tagging simplifies the task without reducing
performance, so we apply character-based tagging strategy in this paper. With
the rapid development of deep learning, neural networks start to show its great
capability in NLP tasks and outperform popular statistical algorithms like CRF
[16]. Recurrent Neural Network (RNN) learns long distance dependencies bet-
ter than CRF which utilizes features found in a certain context window. As a
special kind of RNN, Long Short-term Memory (LSTM) neural network [13] is
proved to be efficient in modeling sequential text [14]. LSTM is designed to cope
with the gradient varnishing/exploding problems [1]. Char-LSTM [17] is intro-
duced to learn character-level sequences, such as prefix and suffix in English. As
to Chinese, each character is semantically meanful, thanks to its pictographic
root from ancient Chinese as depicted in Fig. 1 [26]. The left part of Fig. 1 illus-
trates the evolution process of Chinese character “ ”. The right part of Fig. 1
demonstrates the decomposition. This character “ ”, which means “morning”,
is decomposed into 4 radicals1 that consists of 12 strokes. As depicted by the
pictograms in the right part of Fig. 1, the 1st radical (and the 3rd that happens
to be the same) means “grass”, and the 2nd and the 4th mean the “sun” and
the “moon”, respectively. These four radicals altogether convey the meaning that
“the moment when sun arises from the grass while the moon wanes away”, which
is exactly “morning”. On the other hand, it is hard to decipher the semantics of
strokes, and radicals are the minimum semantic unit for Chinese.

In this paper, we use a character-based bidirectional LSTM-CRF (BLSTM-
CRF) neural network for CNER task. By contrasting results of LSTM varients,
we find a suitable LSTM block for CNER. Inspired by char-LSTM [17], we pro-
pose a radical-level LSTM for Chinese to capture its pictographic root features
and get better performance on CNER task.

2 Related Work

In the third SIGHAN Bakeoff [18] CNER shared task, there are three kinds of
NEs, namely locations, persons, organizations. Although other statistical models,
1 https://en.wikipedia.org/wiki/Radical (Chinese characters).

https://en.wikipedia.org/wiki/Radical_(Chinese_characters)
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such as HMM and ME, once achieved good results [3,8,20], nearly all leading
performance are achieved using CRF model on this bakeoff. Many following work
emphasizes on feature-engineering of character-based CRF model [7,10].

Several neural architectures have previously been proposed for English NER.
Our model basically follows the idea of [17]. [17] presented a LSTM-CRF archi-
tecture with a char-LSTM layer learning spelling features from supervised corpus
and didn’t use any additional resources or gazetteers except a massive unla-
belled corpus for unsupervised learning of pretrained word embeddings. Instead
of char-LSTM for phonogram languages in [17], we propose a radical-level LSTM
designed for Chinese characters. [6] uses a Convolutional Neural Network (CNN)
over a sequence of word embeddings with a CRF layer on top. [14] presented a
model similar to [17]’s LSTM-CRF, but used hand-crafted spelling features. [4]
proposed a hybrid of BLSTM and CNNs to model both character-level and word-
level representations in English. They utilized external knowledge such as lexicon
features and character-type. [22] proposed a BLSTM-CNNs-CRF architecture
using CNNs to model character-level information. [28] proposed a hierarchical
GRU neural network for sequence tagging using multi-task and cross-lingual
joint training.

Only a few work focused on Chinese radical information. [27] proposed a
feed-forward neural network similar to [6], but used Chinese radical information
as supervised tag to train character embeddings. [21] trained their character
embeddings in a holistic unsupervised and bottom-up way based on [23,24],
using both radical and radical-like components. [26] used radical embeddings as
input like ours and utilized word2vec [23] package to pretrain radical vectors,
but they used CNNs, while we use LSTM to obtain radical-level information.

3 Neural Network Architecture

3.1 LSTM

RNNs are a family of neural networks designed for sequential data. RNNs take
as input a sequence of vectors (x1,x2, . . . ,xn) and return another sequence
(h1,h2, . . . ,hn) that represents state layer information about the sequence at
each step in the input. In theory, RNNs can learn long dependencies but in
practice they tend to be biased towards their most recent inputs in the sequence
[1]. Long Short-term Memory Networks (LSTMs) incorporate a memory-cell
to combat this issue and have shown great capabilities to capture long-range
dependencies. Our LSTM has input gate, output gate, forget gate and peephole
connection. The update of cell state use both input gate and forget gate results.
The implementation is:

it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (input gate)
ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (forget gate)
ct = ft � ct−1 + it � tanh(Wxcxt + Whcht−1 + bc) (cell state)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (output gate)
ht = ot � tanh(ct) (output)
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where σ is the element-wise sigmoid function, � is the element-wise product,
W’s are weight matrices, and b’s are biases.

We get the context vector of a character using a bidirectional LSTM. For
a given sentence (x1,x2, . . . ,xn) containing n characters, each character repre-
sented as a d-dimensional vector, a LSTM computes a representation

−→
ht of the

left context of the sentence at every character t. Similarly, the right context←−
ht starting from the end of the sentence should provide useful information. By
reading the same sentence in reverse, we can get another LSTM which achieves
the right context information. We refer to the former as the forward LSTM and
the latter as the backward LSTM. The context vector of a character is obtained
by concatenating its left and right context representations, ht =

[−→
ht;

←−
ht

]
.

3.2 CRF

The hidden context vector ht can be used directly as features to make inde-
pendent tagging decisions for each output yt. But in CNER, there are strong
dependencies across output labels. For example, I-PER cannot follow B-ORG,
which constraints the possible output tags after B-ORG. Thus, we use CRF to
model the outputs of the whole sentence jointly. For an input sentence,

X = (x1,x2, . . . ,xn)

we regard P as the matrix of scores outputted by BLSTM network. P is of size
n × k, where k is the number of distinct tags, and Pi,j is the score of the jth tag
of the ith character in a sentence. For a sequence of predictions,

y = (y1, y2, . . . , yn)

we define its score as

s(X,y) =
n∑

i=0

Ayi,yi+1 +
n∑

i=1

Pi,yi
(1)

where A is a matrix of transition scores which models the transition from tag
i to tag j. We add start and end tag to the set of possible tags and they are
the tags of y0 and yn that separately means the start and the end symbol of a
sentence. Therefor, A is a square matrix of size k + 2. After applying a softmax
layer over all possible tag sequences, the probability of the sequence y:

p(y|X) =
es(X,y)∑

ỹ∈YX
es(X,ỹ)

(2)

We maximize the log-probability of the correct tag sequence during training:

log(p(y|X)) = s(X,y) − log(
∑

ỹ∈YX

es(X,ỹ)) (3)

= s(X,y) − logadd
ỹ∈YX

s(X, ỹ) (4)
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Fig. 2. Main architecture of character-based BLSTM-CRF.

where YX represents all possible tag sequences including those that do not obey
the IOB format constraints. It’s evident that invalid output label sequences will
be discouraged. While decoding, we predict the output sequence that gets the
maximum score given by:

y∗ = arg max
ỹ∈YX

s(X, ỹ) (5)

We just consider bigram constraints between outputs and use dynamic program-
ming during decoding (Fig. 2).

3.3 Radical-Level LSTM

Chinese characters are often composed of smaller and primitive radicals, which
serve as the most basic unit for building character meanings [21]. These radicals
are inherent features inside Chinese characters and bring additional information
that has semantic meaning. For example, the characters “ ”(you),“ ”(he), and
“ ”(people) all have the meanings related to human because of their shared rad-
ical “ ”(human), a variant of Chinese character “ ”(human) [21]. Intrinsically,
this kind of radical semantic information is useful to make characters with simi-
lar radical sequences close to each other in vector space. It motivates us to focus
on the radicals of Chinese characters.

In modern Chinese, character usually contains several radicals. In MSRA
data set, including training set and test set, 75.6% characters have more
than one radical. We get radical compositions of Chinese characters from
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online Xinhua Dictionary2. In simplified Chinese, radicals inside a character
may have changed from its original shape. For example, the first radical of the
Chinese character “ ”(leg) is “ ”(moon), which is the simplified form of tradi-
tional radical “ ”(meat), while the radical of “ ”(morning) is also “ ”(moon)
and actually means moon. To deal with these variants, we replace the most
important simplified radical, which is also called bù(meaning “categories”), with
its traditional shape of radical to restore its original meaning. Both the simplified
radical and the traditional radical of a character can be found in online Xinhua
Dictionary, too. For a monoradical character, we just use itself as its radical
part. After this substitution, we get all the composing radicals to build a radical
list of every Chinese character. As each radical of a character has a unique posi-
tion, we regard the radicals of one character as a sequence in writing order. We
employ a radical-level bidirectional LSTM to capture the radical information.
Figure 3 shows how we obtain the final input embeddings of a character.

Fig. 3. The final embeddings of Chinese character . We concatenate the final out-
puts of the radical-level BLSTM to the character embedding from a lookup table as
the final representation for the character .

2 http://tool.httpcn.com/Zi/.

http://tool.httpcn.com/Zi/
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3.4 Tagging Scheme

As we use a character-based tagging strategy, we need to assign a named entity
label to every character in a sentence. Many NEs span multiple characters in
a sentence. Sentences are usually represented the IOB format(Inside, Outside,
Beginning). In this paper, we use IOBES tagging scheme. Using this scheme,
more information about the following tag is considered.

4 Network Training

4.1 LSTM Variants

We compare results of LSTM variants on CNER to find a better variant of
LSTM. The initial version of LSTM block [13] included cells, input and output
gates to solve the gradient varnishing/exploding problem. So we keep input and
output gate in most of the variants. The derived variants of LSTM mentioned
in Sect. 3.1 are the following:

1. No Peepholes, No Forget Gate, Coupled only Input Gate (NP, NFG, CIG)
2. Peepholes, No Forget Gate, Coupled only Input Gate (P, NFG, CIG)
3. No Peepholes, Forget Gate, Coupled only Forput Gate (NP, FG, CFG)
4. No Peepholes, Forget Gate, Coupled Input and Forget Gate (NP, FG, CIFG)
5. No Peepholes, Forget Gate(1), Coupled Input and Forget Gate (NP, FG(1),

CIFG)
6. Gated Recurrent Unit (GRU)

Considering formule cell state in Sect. 3.1, if we use CIG to update cell state,
there will be only one gate for both the input and the cell state, so forget gate will
be omitted. This is equivalent to setting ft = 1−it instead of using the forget gate
independently. GRU [5] is a variant of LSTM without having separate memory
cells and exposes the whole state each time. (5) means bias of forget gate are
initialized to 1 instead 0. Results of different variants are reported in Sect. 5.2.

4.2 Pretrained Embeddings

There are usually too many parameters to learn from only a limited training data
in deep learning. To solve this problem, unsupervised learning method to pre-
train embeddings emerged, which only used large unlabelled corpus. Instead of
randomly initialized embeddings, well pretrained embeddings have been proved
important for performance of neural network architectures [11,17]. We observe
significant improvements using pretrained character embeddings over randomly
initialized embeddings. Here we use gensim3 [25], which contains a python ver-
sion implementation of word2vec. These embeddings are fine-tuned during train-
ing. We use Chinese Wikipedia backup dump of 20151201. After transforming
traditional Chinese to simplified Chinese, removing non-utf8 chars and unifying
3 https://radimrehurek.com/gensim/index.html.

https://radimrehurek.com/gensim/index.html
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different styles of punctuations, we get 1.02 GB unlabelled corpus. Character
embeddings are pretrained using CBOW model because it’s faster than skip-
gram model. Results using different character embedding dimension are shown
in Sect. 5.2. Radical embeddings are randomly initialized with dimension of 50.

4.3 Training

We use dropout training [12] before the input to LSTM layer with a probability
of 0.5 in order to avoid overfitting and observe a significant improvement in
CNER performance. According to [17], we train our network using the back-
propagation algorithm updating our parameters on every training example, one
at a time. We use stochastic gradient decent (SGD) algorithm with a learning
rate of 0.05 for 50 epochs on training set. Dimension of LSTM is the same as its
input dimension.

5 Experiments

5.1 Data Sets

We test our model on MSRA data set of the third SIGHAN Bakeoff Chinese
named entity recognition task. This dataset contains three types of named enti-
ties: locations, persons, organizations. Chinese word segmentation is not avail-
able in test set. We just replace every digit with a zero and unify the styles of
punctuations appeared in MSRA and pretrained embeddings.

5.2 Results

Table 1 presents our comparisons with different variants of LSTM block.
(1) achieves best performance among all the variants. We observe that peephole
connections do not improve performance in CNER, but they increase training
time because of more connections. Different from conclusions of [9,15], perfor-
mance decreases after adding the forget gate no matter how to update cell state.

Table 1. Results with LSTM variants.

ID Variants of LSTM F1

(1) NP, NFG, CIG 90.75

(2) P, NFG, CIG 90.37

(3) NP, FG, CFG 89.85

(4) NP, FG, CIFG 89.90

(5) NP, FG(1), CIFG 90.45

(6) GRU 90.43

Table 2. Results with different character
embedding dimensions.

Dimension F1

50 88.92

100 90.75

200 90.44
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But performance is prompted after setting bias of the forget gate to 1, which
make the forget gate to tend to remember long distance dependencies. The way
to couple the input and forget gates does not have significantly impact on per-
formance, which is the same as [9]. GRU needs less training time due to the
simplification of inner structure without hurting performance badly. Finally, we
choose (1) as the LSTM block in the following experiments.

Table 2 shows results with different character embedding dimensions. We
use pretrained character embeddings, dropout training, BLSTM-CRF architec-
ture on all three experiments. Different from results reported by [17] in English,
50 dims is not enough to represent Chinese character. 100 dims achieve 1.83% bet-
ter than 50 dims in CNER, but no more improvement is observed using 200 dims.
We use 100 dims in the following experiments.

Our architecture have several components that have different impact on the
overall performance. Without CRF layer on top, the model does not converge to
a stable state in even 100 epochs using the same learning rate 0.05. We explore
the impact that dropout, radical-level representations, pretraining of charac-
ter emebeddings have on our LSTM-CRF architecture. Results with different
architectures are given in Table 3. We find that radical-level LSTM gives us an
improvement of +0.53 in F1 with random initialized character embeddings. It is
evident that radical-level information is effective for Chinese. Pretrained char-
acter embeddings, which is trained using unlabelled Chinese Wikipedia corpus
by unsupervised learning, increase result by +1.84 based on dropout training.
Dropout is important and gives the biggest improvement of +3.88. Radical-level
LSTM makes out-of-vocabulary characters, which are initialized with random
embeddings, close to known characters that have similar radical components.
Only 3 characters in the training and test set can not be found in Wikipedia
corpus. In other words, there are few characters initialized with random embed-
dings. So we do not find further improvement using both radical-level LSTM and
well pretrained character embeddings. Radical-level LSTM is obviously effective
when there is no large corpus for character pretrainings.

Table 3. Results with different components.

Variant F1

random + dropout 88.91

random + radical + dropout 89.44

pretrain + dropout 90.75

pretrain 86.87

Table 4 shows our results compared with other models for Chinese named
entity recognition. To show the capability of our model, we train our model for
100 epochs instead of 50 epochs in the previous experiments. Zhou [31] got first
place using word-based CRF model with delicated hand-crafted features in the
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Table 4. Results with different methods. We train our models for 100 epochs in this
experiment. aIndicates results in the open track.

Model PER-F LOC-F ORG-F P R F

Zhou [31] 90.09 85.45 83.10 88.94 84.20 86.51

Chen [2] 82.57 90.53 81.96 91.22 81.71 86.20

Zhou [32] 90.69 91.90 86.19 91.86 88.75 90.28

Zhang [29]a 96.04 90.34 85.90 92.20 90.18 91.18

BLSTM-CRF + radical 89.62 91.76 85.79 91.39 88.22 89.78

BLSTM-CRF + pretrain 91.77 92.10 87.30 91.28 90.62 90.95

closed track on MSRA data set with F1 86.51%. Chen [2] achieved F1 86.20%
using character-base CRF model. Zhou [32] used a global linear model to iden-
tify and categorize CNER jointly with 10 carefully designed feature templates
for CNER and 31 context feature templates from [30]. Zhou [32] adopted a more
granular labelling schemes for example changing PER tags that are shorter than
4 characters and begin with a Chinese surname to Chinese-PER. In the open
track, Zhang [29] got first place using ME model combining knowledge from vari-
ous sources with 91.18%, such as person name list, organization name dictionary,
location keyword list and so on. Our BLSTM-CRF with radical embeddings out-
performs previous best CRF model by +3.27 in overall. Our BLSTM-CRF with
pretrained character embeddings outperforms all the previous models except
for results of Zhang [29] in the open track and achieves state-of-the-art perfor-
mance with F1 90.95%. Especially for ORG entities, which is the most difficult
category to recognize, our approach utilizes the capability of LSTM to learn
long-distance dependencies and achieves a remarkable performance. The main
reason that Zhang [29] obtained better performance than ours by +0.23 in over-
all F1 is that they used additional name dictionaries to achieve very high PER-F
while we do not use those dictionaries. Our neural network architecture does not
need any hand-crafted features which are important in Zhou [32].

6 Conclusion

This paper presents our neural network model, which incorporates Chinese
radical-level information to character-based BLSTM-CRF and achieves state-
of-the-art results. We utilize LSTM block to learn long distance dependencies
which are useful to recognize ORG entities. Different from research focused on
feature engineering, our model does not use any hand-crafted features or domain-
specific knowledge and thus, it can be transferred to other domains easily. In the
future, we would like to transfer our model to Chinese social media domain.
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