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Abstract. In this paper, we propose a bidirectional algorithm for sequence labe-
ling to capture the influence of both the left-to-right and the right-to-left direc-
tions. We combine the optimization of two unidirectional models from opposite 
directions via the dual decomposition method to jointly label the input se-
quence. Experiments on three sequence labeling tasks (Chinese word segmenta-
tion, English POS tagging and text chunking) show that our approach can  
improve the accuracy of sequence labeling tasks when the two unidirectional 
models individually make highly different predictions. 

1 Introduction 

Many natural language processing tasks, e.g., POS tagging, text chunking and Chi-
nese word segmentation, can be formulated as a sequence labeling problem. In these 
tasks, each token in a sequence is assigned a label, and the label assignment of a given 
token is influenced by the label assignments of the previous tokens. Most sequence 
labeling models are unidirectional where the inference procedure is performed in one 
direction only (left to right, or right to left, but not both). As a result, only the influ-
ence of one direction is explicitly considered. For many sequence labeling tasks, 
however, both the left and right contexts can be useful and should be taken into ac-
count. For example, consider the POS tagging procedure for the sentence “Would 
service be voluntary or compulsory?”. The word “service” can either be labeled as a 
verb or a noun. In a left-to-right model, the POS tag “MD” of the previous word 
“Would” strongly indicates that “service” should be tagged as verb. However, this is 
the incorrect answer in the case. In a right-to-left model, the POS tag “VB” of the 
following word “be” indicates “service” should be a noun, which is the correct an-
swer. This means that a model that accounts for the influence of both the left and right 
contexts is better. 

In recent years, a number of bidirectional sequence labeling models were proposed 
to exploit the influence of both directions. Liu and Zong (2003) and Shen et al. (2003) 
improved the tagging accuracy by pairwise combining or voting between the left-to-
right and right-to-left taggers. Toutanova et al. (2003) proposed a POS tagging model 
based on bidirectional dependency networks that make the right context available for 
a left-to-right model. Tsuruoka and Tsujii (2005) considered all possible decomposi-
tions of bidirectional contexts, and chose one that has the highest probability among 
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different taggers. Shen et al. (2007) extended Tsuruoka and Tsujii (2005) and inte-
grated the inference order selection and classifier training into a single learning 
framework. 

In this paper, we propose a novel approach for bidirectional sequence labeling. We 
combine the optimization of two unidirectional models from opposite directions to 
predict agreed labels through the dual decomposition method. We estimated our ap-
proach on three sequence labeling tasks for two languages: Chinese word segmenta-
tion, English POS tagging and text chunking. Experimental results show that our  
approach is effective when the two unidirectional models individually make highly 
different predictions. 

2 Unidirectional Approach 

Let us denote the input sequence of tokens as ݔ ൌ ଶݔଵݔ …  ௡, and the label sequence forݔ
x as ݕ ൌ ଶݕଵݕ … ௜ݕ ௡, whereݕ  (belonging to a label set ࢅ) is the label for the token ݔ௜. 
For example, in part-of-speech tagging, the input sequence would be the word tokens in a 
sentence and the output would be POS tags for the word tokens. 

The task of sequence labeling is to find the best label sequence ݕො for an input  
sequence x: ݕො ൌ ࣳא௬ݔܽ݉݃ݎܽ  ሻ                        (1)ݔ|ݕሺ݌

Usually, the global probability ݌ሺݔ|ݕሻ can be decomposed into products of a se-
quence of local predictions. For example, in the left-to-right model, the probability is 
decomposed into: ݌ሺݔ|ݕሻ ൌ ∏ ,ݔ|௜ݕሺ݌ ଵݕ … ௜ିଵሻ௡௜ୀଵݕ                      (2) 

where ݌ሺݕ௜|ݔ, ଵݕ … ௜ݕ ௜ିଵሻ is the prediction probability of assigningݕ  for ݔ௜. Here, 
we model the prediction probability with the Maximum Entropy (ME) model: 

,ݔ|௜ݕሺ݌  ଵݕ … ௜ିଵሻݕ ൌ exp൫ݓ · ߶ሺݔ, ଵݕ … ,௜ିଵݕ ∑௜ሻ൯ݕ exp ቀݓ · ߶ሺݔ, ଵݕ … ,௜ିଵݕ ′௜ᇱሻቁ௬೔ݕ                          ሺ3ሻ 

 
where ߶ሺݔ, ଵݕ … ,௜ିଵݕ  is the weight vector for those ݓ ௜ሻ is a feature vector, andݕ
features. When given a training set of labeled sequences, we can estimate the model 
parameter ݓ using the usual way for ME models, i.e., Generalized Iterative Scaling 
(GIS) or gradient descent methods.  

The probability of the current label prediction in E.q (3) is conditioned on label 
predictions for previous tokens. If we make a first-order Markov assumption, the 
Viterbi algorithm would be an efficient decoding method. However, Jiang et al., 
(2008) showed that non-local features are much helpful for POS tagging. Therefore, 
we design a unidirectional decoding algorithm that uses more than one prediction 
before the current position. 
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Algorithm 1 shows the decoding algorithm, which is based on the beam search al-
gorithm. We use two max-heaps to hold the partial label sequences, where preHeap 
maintains a list of N best partial candidates ending at position i-1 and curHeap main-
tains a list of N best partial candidates ending at position i. The algorithm initializes 
the preHeap with an empty sequence (line 1). It then traverses the input sequence 
from left to right, and assigns a label to each token (line 2 to line 13). When 
processing the i-th token ݔ௜, the algorithm extracts the top partial candidate item from 
preHeap (line 6), and tries to extend item with each label in the label set ࢅ. If a label ݕ௜  is compatible with item (line 9), we build a new partial candidate item’ by combin-
ing ݕ௜  with item (line 11), calculate the probability of item’ using E.q. (2) (line 10) 
and add it to curHeap (line 12). When all the input tokens are processed, the best 
partial candidate in curHeap is returned as the final result (line 14). 

 

 
 
Although the model and the decoding algorithm are designed for the left-to-right 

direction, they can be trivially adapted to the right-to-left direction. To train a right-to-
left model, we just reverse all the label sequences in the training set before training. 
For decoding, we reverse the input sequence first, then decode the reversed sequence 
with the right-to-left model and reverse the label sequence back. 

3 Bidirectional Decoding  

In this section, we describe how to improve sequence labeling by jointly optimizing 
the two unidirectional models. We train a left-to-right model and a right-to-left model 
and then jointly label an input sequence with the two models. 

For purposes of clarity, we define some notations first. The label sequence from the 
left-to-right model is denoted as ݈ ൌ ݈ଵ݈ଶ … ݈௡, and the output from the right-to-left 

Algorithm 1 Unidirectional Decoding Algorithm 
Input: sequence , beam size N 
Output: label sequence  
1:  preHeap New-Item(null)   
2:  for i  1…n do 
3:      curHeap  
4:      k  0 
5:      while | preHeap | > 0 and k < N do 
6:          item  Pop-Max(preHeap) 
7:          k  k + 1 
8:          for  in  do 
9:              if IsCompatible (item, ) then 
10:               prob  Eval(i, x, item, ) 
11:               item’  New-Item(item, ,prob) 
12:               Push(curHeap, item’) 
13:     preHeap  curHeap 
14: return Pop-Max(curHeap) 

.
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model is denoted as ݎ ൌ ଶݎଵݎ … ݈ ௡. Forݎ ൌ ݈ଵ݈ଶ … ݈௡, we define ݈ሺ݅, ሻݐ ൌ 1 if ݈௜ is 
assigned with a label ݐ א ܻ, otherwise ݈ሺ݅, ሻݐ ൌ 0. Similarly, for ݎ ൌ ଶݎଵݎ …  ௡, weݎ
define ݎሺ݅, ሻݐ ൌ 1 if ݎ௜ is assigned with a label ݐ א ܻ, otherwise ݎሺ݅, ሻݐ ൌ 0. There-
fore, ݈ and ݎ are equal, only if ݈ሺ݅, ሻݐ ൌ ,ሺ݅ݎ ݅ ሻ for allݐ א ሾ1, ݊ሿ and ݐ א ܻ, oth-
erwise they are unequal. 

We expect the two unidirectional models to predict equal results and formulate it as 
a constraint optimization problem: ൫መ݈, ൯ݎ̂ ൌ argmax௟,௥  ଵ݂ሺ݈ሻ ൅ ଶ݂ሺݎሻ 

Such that for all ݅ א ሾ1, ݊ሿ and ݐ א ܻ:   ݈ሺ݅, ሻݐ ൌ ,ሺ݅ݎ  ሻݐ
where ଵ݂ሺ݈ሻ ൌ ݃݋݈ ሻݔ|ሺ݈݌ ൌ ∑ log ,ݔ|ሺ݈௜݌ ݈ଵ … ݈௜ିଵሻ௡௜ୀଵ  is a score estimated from 

the left-to-right model, and ଶ݂ሺݎሻ ൌ ݃݋݈ -ሻ is a score estimated from the rightݔ|ݎሺ݌
to-left model.  

The dual decomposition (a special case of Lagrangian relaxation) method intro-
duced in Rush et al. (2010) is suitable for this problem. Following their method, we 
solve the primal constraint optimization problem by optimizing the dual problem. 
First, we introduce a vector of Lagrange multiplier ߤሺ݅, -ሻ for each equality conݐ
straint: ݈ሺ݅, ሻݐ ൌ ,ሺ݅ݎ ,ሺ݈ܮ :ሻ. Then, the Lagrangian is formulated asݐ ,ݎ ሻߤ ൌ ଵ݂ሺ݈ሻ ൅ ଶ݂ሺݎሻ ൅ ෍ ,ሺ݅ߤ ,ሻሺ݈ሺ݅ݐ ሻݐ െ ,ሺ݅ݎ ሻሻ௜,௧ݐ  

By grouping the terms that depend on ݈ and ݎ, we rewrite the Lagrangian as ܮሺ݈, ,ݎ ሻߤ ൌ ൭ ଵ݂ሺ݈ሻ ൅ ෍ ,ሺ݅ߤ ,ሺ݅ݏሻݐ ሻ௜,௧ݐ ൱ ൅ ൭ ଶ݂ሺݎሻ െ ෍ ,ሺ݅ߤ ,ሺ݅ݐሻݐ ሻ௜,௧ݐ ൱ 

Then, the dual objective is ܮሺߤሻ ൌ max௟,௥ ,ሺ݈ܮ ,ݎ ሻൌߤ max௟ ൭ ଵ݂ሺ݈ሻ ൅ ෍ ,ሺ݅ߤ ,ሻ݈ሺ݅ݐ ሻ௜,௧ݐ ൱
൅ max௥ ൭ ଶ݂ሺݎሻ െ ෍ ,ሺ݅ߤ ,ሺ݅ݎሻݐ ሻ௜,௧ݐ ൱ 

The dual problem is to find the minఓ  .ሻߤሺܮ
We use the subgradient method (Boyd et al., 2003) to minimize the dual. Follow-

ing Rush et al. (2010), we define the subgradient of  ܮሺߤሻ as: ߛሺ݅, ሻݐ ൌ ݈ሺ݅, ሻݐ െ ,ሺ݅ݎ ,ሻ  for all ሺ݅ݐ  .ሻݐ

Then, adjust ߤሺ݅, ,ᇱሺ݅ߤ :ሻ as followsݐ ሻݐ ൌ ,ሺ݅ߤ ሻݐ െ ,ሺ݈ሺ݅ߜ ሻݐ െ ,ሺ݅ݎ  ሻሻݐ

where 0<ߜ is a step size. 
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Algorithm 2 presents the subgradient method to solve the dual problem. The algo-

rithm initializes the Lagrange multiplier values with 0 (line 1) and then iterates many 
times. At each iteration, the algorithm finds the best መ݈ሺ௞ሻ and ̂ݎሺ௞ሻ through the left-
to-right model (line 3) and the right-to-left model (line 4) individually. If መ݈ሺ௞ሻ and  ̂ݎሺ௞ሻ are equal (line 5), then the algorithm returns the solution (line 6). Otherwise, the 
algorithm adjusts the Lagrange multiplier values based on the differences between  መ݈ሺ௞ሻ and ̂ݎሺ௞ሻ (line 8). A crucial point is that the argmax problems in line 3 and line 
4 can be solved efficiently using the original unidirectional decoding algorithms, be-
cause the Lagrange multiplier can be regarded as adjustments for the prediction score  log ,ݔ|௜ݕሺ݌ ଵݕ …  ௜ିଵሻ of each token. According to the strong duality theorem (Korteݕ
and Vygen, 2008), the dual solution is the label sequence we want to get. 

4 Experiment 

To evaluate the effectiveness of our method, we conducted experiments on three se-
quence labeling tasks: Chinese word segmentation, English POS tagging and text 
chunking. 

4.1 Tasks and Data Sets 

The task of Chinese word segmentation is segmenting a sequence of Chinese charac-
ters into words. The character-based model (Xue, 2003) treats segmentation as a se-
quence labeling task, where each Chinese character is labeled with a tag. We used the 
tag set used in Wang et al. (2011). We split the Chinese Treebank Version 5.0 (CTB5) 
with the standard data split: 1-270, 400-1151 as the training set, 301-325 as the devel-
opment set and 271-300 as the test set. 

We split the Penn Wall Street Journal Treebank (WSJ) with the standard data split 
for POS tagging: sections 0-18 as the training set, sections 19-21 as the development 
set and sections 22-24 as the test set. 

The task of text chunking is to find non-recursive phrases in a sentence. We treat it 
as a tagging task by converting chunks into tags on tokens. We choose the IOB 
scheme: each token gets the label B-X if it is the first token in chunk X, the label I-X 

Algorithm 2. Bidirectional Decoding Algorithm 
1: Set ߤሺ଴ሻሺ݅, ݅ ሻ=0, for allݐ א ሾ1, ݊ሿ and ݐ א  ࢅ
2: for k = 1 to K do 
3:  መ݈ሺ௞ሻ ՚ argmax௟൫ ଵ݂ሺ݈ሻ ൅ ∑ ,ሺ௞ିଵሻሺ݅ߤ  ,ሻ݈ሺ݅ݐ ሻ ௜,௧ݐ ൯ 
ሺ௞ሻݎ̂  :4 ՚ argmax௥൫ ଶ݂ሺݎሻ െ ∑ ,ሺ௞ିଵሻሺ݅ߤ  ,ሺ݅ݎሻݐ ሻ ௜,௧ݐ ൯ 

5:  if ݈ሺ௞ሻሺ݅, ሻݐ ൌ ,ሺ௞ሻሺ݅ݎ ,ሻ for all ሺ݅ݐ  ሻ thenݐ
6:     return ( መ݈ሺ௞ሻ, ̂ݎሺ௞ሻ) 
7:  else   

,ሺ௞ሻሺ݅ߤ     :8 ሻݐ ൌ ,ሺ௞ିଵሻሺ݅ߤ  ሻݐ െ ߜ ቀ݈ሺ௞ሻሺ݅, ሻݐ െ ,ሺ௞ሻሺ݅ݎ  ሻቁݐ
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if it is not the first token in chunk X, or the label O if it is outside of any chunks. We 
used the data set from the CoNLL-2000 shared task. 

The feature templates for each task are adopted from previous work. For Chinese 
word segmentation, we use the feature templates provided in Wang et al. (2011). For 
POS tagging and chunking, we used the feature templates provided in Tsuruoka and 
Tsujii (2005), excluding those temples containing future predictions. 

4.2 Results 

We built three systems for each task. The “left-to-right” system and the “right-to-left” 
system were two unidirectional systems, which trained models and decoded se-
quences from opposite directions. The “bidirectional” system used these two unidirec-
tional models jointly to decode sequences with Algorithm 2. We trained models for 
three tasks with the Maximum Entropy model implemented in the OpenNLP toolkit.  

We tuned parameters on the development set and finally set the beam size (in Algo-
rithm 1) to N=20, the maximum iteration to K=30 and the step size to 0.5=ߜ (in Algo-
rithm 2). The experimental results on the test set are presented in Table 1 and they 
show that the accuracy of the POS tagging task and the F1 score of the chunking task 
were improved when using the bidirectional decoding algorithm. However, the Chi-
nese word segmentation task showed no improvement.  

Fig. 1 illustrates how the bidirectional de-coding algorithm leads to improvement 
over unidirectional models when assigning POS tags to the sentence “Would service 
be voluntary or compulsory?”. In the left-to-right model, the word token “service” is 
labeled with an erroneous tag “VB”, because the preceding word  “Would” is a 
modal verb that is often followed by a verb. In the right-to-left model, “service” is 
correctly labeled, because the following word “be” is a verb that is often preceded by 
nouns. However, the right-to-left model assigns the wrong tag “NN” to the word 
“compulsory”, presumably because it is the first token in the sequence and “NN” is a 
more likely tag for the first token. The left-to-right model, on the other hand, assigns 
the correct label “JJ”. The bidirectional algorithm combines the strengths of both 
models and assigns the correct tags to all words. 

Table 1. Experimental results on the test set 

 

  F1(%) 

Chinese Word  
Segmentation 

left-to-right 97.67 
right-to-left 97.55 
bidirectional 97.65 

  Accuracy(%) 

POS Tagging 
left-to-right 96.83 
right-to-left 96.84 
bidirectional 97.15 

  F1(%) 

Chunking 
left-to-right 93.42 
right-to-left 93.37 
bidirectional 93.61 
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Fig. 1. A POS tagging example, where the wrong tags are highlighted with red color 

4.3 Discussion 

To understand the scenarios where the bidirectional decoding algorithm is effective, 
we analyzed the three tasks in detail. Table 2 presents the total number of tokens in 
the test set and the number of tokens to which the left-to-right and right-to-left models 
assigned different labels. We found the number of tokens receiving different labels 
was low for the Chinese word segmentation task, but high for the English POS tag-
ging and chunking tasks. Combined with the results in Table 1, we can conclude that 
our algorithm is effective when the two unidirectional models make very different 
predictions. When the two unidirectional models make the same predictions, even if 
the predictions are wrong, the bidirectional algorithm can do nothing to correct them. 

We also estimated the convergence of the bidirectional decoding algorithm by 
counting the number of iterations when the two unidirectional models make different 
predictions. Fig. 2 shows the percentage of sequences where exact solutions are re-
turned versus the number of iterations. We find our algorithm produces exact solu-
tions to over 80% of the sequences within 10 iterations. 

Table 2. Differences between the left-to-right and the right-to-left results 

 

 

Fig. 2. Convergence of the bidirectional decoding algorithm 

Would  service   be  voluntary  or compulsory ? 
Gold  MD NN VB JJ CC JJ . 
Left-to-right: MD VB VB JJ CC JJ . 
Right-to-left: MD NN VB JJ CC NN . 
Bidirectional: MD NN VB JJ CC JJ . 
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  Total Tokens Inconsistent Tokens 
Word Seg. 13,738 48 
POS Tagging 129,654 2,384 
Chunking 47,377 980 
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5 Conclusion 

In this paper, we proposed a bidirectional decoding algorithm for sequence labeling 
tasks. We use two unidirectional models of opposite directions to jointly label the 
input sequences via the dual decomposition algorithm. Experiments on three sequence 
labeling tasks show that our approach improves the performance on sequence labeling 
tasks when the two unidirectional models makes very different predictions. 
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