
Character-Based LSTM-CRF with Radical-Level
Features for Chinese Named Entity Recognition

Chuanhai Dong1, Jiajun Zhang1, Chengqing Zong1
Masanori Hattori2, and Hui Di2

1 National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Sciences, Beijing, China

{chuanhai.dong,jjzhang,cqzong}@nlpr.ia.ac.cn,
2 Toshiba (China) R&D Center

masanori.hattori@toshiba.co.jp, dihui@toshiba.com.cn

Abstract. State-of-the-art systems of Chinese Named Entity Recogni-
tion (CNER) require large amounts of hand-crafted features and domain-
specific knowledge to achieve high performance. In this paper, we apply
a bidirectional LSTM-CRF neural network that utilizes both character-
level and radical-level representations. We are the first to use character-
based BLSTM-CRF neural architecture for CNER. By contrasting the
results of different variants of LSTM blocks, we find the most suitable
LSTM block for CNER. We are also the first to investigate Chinese
radical-level representations in BLSTM-CRF architecture and get better
performance without carefully designed features. We evaluate our system
on the third SIGHAN Bakeoff MSRA data set for simplfied CNER task
and achieve state-of-the-art performance 90.95% F1.
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1 Introduction

Named Entity Recognition (NER) is a fundamental technique for many nat-
ural language processing applications, such as information extraction, question
answering and so on. Carefully hand-crafted features and domain-specific knowl-
edge resources, such as gazetteers, are widely used to solve the problem. As to
Chinese Named Entity Recognition (CNER), there are more complicated proper-
ties in Chinese, for example, the lack of word boundary, the complex composition
forms, the uncertain length, NE nesting definition and so on [7].

Many related research regards NER as a sequence labelling task. The applied
methods on CNER include Maximum Entropy (ME) [3, 20], Hidden Markov
Model (HMM) [8], Support Vector Machine (SVM) [19] and Conditional Ran-
dom Field (CRF) algorithms [10, 7]. Character-based tagging strategy achieves
comparable performance without results of Chinese Word Segmentation (CWS)
[2, 31], which means Chinese character can be the minimum unit to identify NEs
instead of words. Character-based tagging simplifies the task without reducing
performance, so we apply character-based tagging strategy in this paper. With



the rapid development of deep learning, neural networks start to show its great
capability in NLP tasks and outperform popular statistical algorithms like CRF
[16]. Recurrent Neural Network (RNN) learns long distance dependencies better
than CRF which utilizes features found in a certain context window. As a special
kind of RNN, Long Short-term Memory (LSTM) neural network [13] is proved
to be efficient in modeling sequential text [14]. LSTM is designed to cope with
the gradient varnishing/exploding problems [1].Char-LSTM [17] is introduced
to learn character-level sequences, such as prefix and suffix in English. As to
Chinese, each character is semantically meanful, thanks to its pictographic root
from ancient Chinese as depicted in Figure 1 [26]. The left part of Figure 1 illus-
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Fig. 1: Decomposition of Chinese Character

trates the evolution process of Chinese character “朝”. The right part of Figure 1
demonstrates the decomposition. This character “朝”, which means “morning”,
is decomposed into 4 radicals3 that consists of 12 strokes. As depicted by the
pictograms in the right part of Figure 1, the 1st radical (and the 3rd that hap-
pens to be the same) means “grass”, and the 2nd and the 4th mean the “sun”
and the “moon”, respectively. These four radicals altogether convey the mean-
ing that “the moment when sun arises from the grass while the moon wanes
away”, which is exactly “morning”. On the other hand, it is hard to decipher the
semantics of strokes, and radicals are the minimum semantic unit for Chinese.

In this paper, we use a character-based bidirectional LSTM-CRF (BLSTM-
CRF) neural network for CNER task. By contrasting results of LSTM varients,
we find a suitable LSTM block for CNER. Inspired by char-LSTM [17], we pro-
pose a radical-level LSTM for Chinese to capture its pictographic root features
and get better performance on CNER task.

2 Related Work
In the third SIGHAN Bakeoff [18] CNER shared task, there are three kinds of
NEs, namely locations, persons, organizations. Although other statistical models,
3 https://en.wikipedia.org/wiki/Radical_(Chinese_characters)



such as HMM and ME, once achieved good results [3, 8, 20], nearly all leading
performance are achieved using CRF model on this bakeoff. Many following work
emphasizes on feature-engineering of character-based CRF model [7, 10].

Several neural architectures have previously been proposed for English NER.
Our model basically follows the idea of [17]. [17] presented a LSTM-CRF ar-
chitecture with a char-LSTM layer learning spelling features from supervised
corpus and didn’t use any additional resources or gazetteers except a massive
unlabelled corpus for unsupervised learning of pretrained word embeddings. In-
stead of char-LSTM for phonogram languages in [17], we propose a radical-level
LSTM designed for Chinese characters. [6] uses a Convolutional Neural Net-
work (CNN) over a sequence of word embeddings with a CRF layer on top. [14]
presented a model similar to [17]’s LSTM-CRF, but used hand-crafted spelling
features. [4] proposed a hybrid of BLSTM and CNNs to model both character-
level and word-level representations in English. They utilized external knowledge
such as lexicon features and character-type. [22] proposed a BLSTM-CNNs-CRF
architecture using CNNs to model character-level information. [28] proposed
a hierarchical GRU neural network for sequence tagging using multi-task and
cross-lingual joint training.

Only a few work focused on Chinese radical information. [27] proposed a
feed-forward neural network similar to [6], but used Chinese radical information
as supervised tag to train character embeddings. [21] trained their character
embeddings in a holistic unsupervised and bottom-up way based on [23, 24],
using both radical and radical-like components. [26] used radical embeddings as
input like ours and utilized word2vec[23] package to pretrain radical vectors, but
they used CNNs, while we use LSTM to obtain radical-level information.

3 Neural Network Architecture

3.1 LSTM

RNNs are a family of neural networks designed for sequential data. RNNs take
as input a sequence of vectors (x1,x2, . . . ,xn) and return another sequence
(h1,h2, . . . ,hn) that represents state layer information about the sequence at
each step in the input. In theory, RNNs can learn long depencies but in prac-
tice they tend to be biased towards their most recent inputs in the sequence
[1]. Long Short-term Memory Networks (LSTMs) incorporate a memory-cell to
combat this issue and have shown great capabilities to capture long-range de-
pendencies. Our LSTM has input gate, output gate, forget gate and peephole
connection. The update of cell state use both input gate and forget gate results.
The implementation is:



it = σ(Wxixt + Whiht−1 + Wcict−1 + bi) (input gate)
ft = σ(Wxfxt + Whfht−1 + Wcfct−1 + bf ) (forget gate)
ct = ft ⊙ ct−1 + it ⊙ tanh(Wxcxt + Whcht−1 + bc) (cell state)
ot = σ(Wxoxt + Whoht−1 + Wcoct + bo) (output gate)
ht = ot ⊙ tanh(ct) (output)

where σ is the element-wise sigmoid function, ⊙ is the element-wise product,
W’s are weight matrices, and b’s are biases.

We get the context vector of a character using a bidirectional LSTM. For
a given sentence (x1,x2, . . . ,xn) containing n characters, each character repre-
sented as a d-dimensional vector, a LSTM computes a representation −→ht of the
left context of the sentence at every character t. Similarly, the right context←−ht starting from the end of the sentence should provide useful information. By
reading the same sentence in reverse, we can get another LSTM which achieves
the right context information. We refer to the former as the forward LSTM and
the latter as the backward LSTM. The context vector of a character is obtained
by concatenating its left and right context representations, ht =

[−→ht;
←−ht

]
.

3.2 CRF

The hidden context vector ht can be used directly as features to make inde-
pendent tagging decisions for each output yt. But in CNER, there are strong
dependencies across output labels. For example, I-PER cannot follow B-ORG,
which contraints the possible output tags after B-ORG. Thus, we use CRF to
model the outputs of the whole sentence jointly. For an input sentence,

X = (x1,x2, . . . ,xn)

we regard P as the matrix of scores outputted by BLSTM network. P is of
size n×k, where k is the number of distinct tags, and Pi,j is the score of the jth

tag of the ith character in a sentence. For a sequence of predictions,

y = (y1, y2, . . . , yn)

we define its score as

s(X,y) =
n∑

i=0

Ayi,y(i+1) +
n∑

i=1

Pi,yi (1)

where A is a matrix of transition scores which models the transition from
tag i to tag j.We add start and end tag to the set of possible tags and they are
the tags of y0 and yn that separately means the start and the end symbol of a
sentence. Therefor, A is a square matrix of size k+ 2. After applying a softmax
layer over all possible tag sequences, the probability of the sequence y:



p(y|X) =
es(X,y)∑

ỹ∈YX
es(X,ỹ) (2)

We maximize the log-probability of the correct tag sequence during training:

log(p(y|X)) = s(X,y)− log(
∑

ỹ∈YX

es(X,ỹ)) (3)

= s(X,y)− logadd
ỹ∈YX

s(X, ỹ) (4)

where YX represents all possible tag sequences including those that do not
obey the IOB format constraints. It’s evident that invalid output label sequences
will be discouraged. While decoding, we predict the output sequence that gets
the maximum score given by:

y∗ = arg max
ỹ∈YX

s(X, ỹ) (5)

We just consider bigram constraints between outputs and use dynamic program-
ming during decoding.
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Fig. 2: Main architecture of character-based BLSTM-CRF.



3.3 Radical-Level LSTM

Chinese characters are often composed of smaller and primitive radicals, which
serve as the most basic unit for building character meanings [21]. These radicals
are inherent features inside Chinese characters and bring additional information
that has semantic meaning. For example, the characters “你”(you),“他”(he), and
“们”(people) all have the meanings related to human because of their shared rad-
ical “亻”(human), a variant of Chinese character “人”(human) [21]. Intrinsically,
this kind of radical semantic information is useful to make characters with simi-
lar radical sequences close to each other in vector space. It motivates us to focus
on the radicals of Chinese characters.

In modern Chinese, character usually contains several radicals. In MSRA
data set, including training set and test set, 75.6% characters have more than
one radical. We get radical compositions of Chinese characters from online Xin-
hua Dictionary4. In simplified Chinese, radicals inside a character may have
changed from its original shape. For example, the first radical of the Chinese
character “腿”(leg) is “月”(moon), which is the simplified form of traditional
radical “肉”(meat), while the radical of “朝”(morning) is also “月”(moon) and
actually means moon. To deal with these variants, we replace the most impor-
tant simplified radical, which is also called bù(meaning “categories”), with its
traditional shape of radical to restore its original meaning. Both the simplified
radical and the traditional radical of a character can be found in online Xinhua
Dictionary, too. For a monoradical character, we just use itself as its radical
part. After this substitution, we get all the composing radicals to build a radical
list of every Chinese character. As each radical of a character has a unique posi-
tion, we regard the radicals of one character as a sequence in writing order. We
employ a radical-level bidirectional LSTM to capture the radical information.
Figure 3 shows how we obtain the final input embeddings of a character.

3.4 Tagging Scheme

As we use a character-based tagging strategy, we need to assign a named entity
label to every character in a sentence. Many NEs span multiple characters in
a sentence. Sentences are usually represented the IOB format(Inside, Outside,
Beginning). In this paper, we use IOBES tagging scheme. Using this scheme,
more information about the following tag is considered.

4 Network Training

4.1 LSTM Variants

We compare results of LSTM variants on CNER to find a better variant of
LSTM. The initial version of LSTM block[13] inclued cells, input and output
gates to solve the gradient varnishing/exploding problem. So we keep input and
4 http://tool.httpcn.com/Zi/
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output gate in most of the variants. The derived variants of LSTM mentioned
in Section 3.1 are the following:

1. No Peepholes, No Forget Gate, Coupled only Input Gate (NP,NFG,CIG)
2. Peepholes, No Forget Gate, Coupled only Input Gate (P,NFG,CIG)
3. No Peepholes, Forget Gate, Coupled only Forput Gate (NP,FG,CFG)
4. No Peepholes, Forget Gate, Coupled Input and Forget Gate (NP,FG,CIFG)
5. No Peepholes, Forget Gate(1), Coupled Input and Forget Gate (NP,FG(1),CIFG)
6. Gated Recurrent Unit (GRU)

Considering formule cell state in Section 3.1, if we use CIG to update cell
state, there will be only one gate for both the input and the cell state, so forget
gate will be omitted. This is equivalent to setting ft = 1 − it instead of using
the forget gate independently. GRU [5] is a variant of LSTM without having
separate memory cells and exposes the whole state each time. (5) means bias of
forget gate are initialized to 1 instead 0. Results of different variants are reported
in Section 5.2.



4.2 Pretrained Embeddings

There are usually too many parameters to learn from only a limited training data
in deep learning. To solve this problem, unsupervised learning method to pre-
train embeddings emerged, which only used large unlabelled corpus. Instead of
randomly initialized embeddings, well pretrained embeddings have been proved
important for performance of neural network architectures[11, 17]. We observe
significant improvements using pretrained character embeddings over randomly
initialized embeddings. Here we use gensim5[25], which contains a python version
implementation of word2vec. These embeddings are fine-tuned during training.
We use Chinese Wikipedia backup dump of 20151201. After transforming tra-
ditional Chinese to simplified Chinese, removing non-utf8 chars and unifying
different styles of punctuations, we get 1.02GB unlabelled corpus. Character
embeddings are pretrained using CBOW model because it’s faster than skip-
gram model. Results using different character embedding dimension are shown
in Section 5.2. Radical embeddings are randomly initialized with dimension of
50.

4.3 Training

We use dropout training[12] before the input to LSTM layer with a probability
of 0.5 in order to avoid overfitting and observe a significant improvement in
CNER performance. According to [17], we train our network using the back-
propagation algorithm updating our parameters on every training example, one
at a time. We use stochastic gradient decent (SGD) algorithm with a learning
rate of 0.05 for 50 epochs on training set. Dimenson of LSTM is the same as its
input dimension.

5 Experiments

5.1 Data Sets

We test our model on MSRA data set of the third SIGHAN Bakeoff Chinese
named entity recognition task. This dataset contains three types of named en-
tities: locations, persons, organizations. Chinese word segmentation is not avail-
able in test set. We just replace every digit with a zero and unify the styles of
punctuations appeared in MSRA and pretrained embeddings.

5.2 Results

Table 1 presents our comparisons with different variants of LSTM block. (1)
achieves best performance among all the variants. We observe that peephole
connections do not improve perfomance in CNER, but they increase training
5 https://radimrehurek.com/gensim/index.html



Table 1: Results with LSTM variants.

ID Variants of LSTM F1
(1) NP,NFG,CIG 90.75
(2) P,NFG,CIG 90.37
(3) NP,FG,CFG 89.85
(4) NP,FG,CIFG 89.90
(5) NP,FG(1),CIFG 90.45
(6) GRU 90.43

Table 2: Results with different character
embedding dimensions.

Dimension F1
50 88.92
100 90.75
200 90.44

time because of more connections. Different from conclusions of [15, 9], perfor-
mance decreases after adding the forget gate no matter how to update cell state.
But performance is prompted after setting bias of the forget gate to 1, which
make the forget gate to tend to remember long distance dependencies. The way
to couple the input and forget gates does not have significantly impact on per-
formance, which is the same as [9]. GRU needs less training time due to the
simplification of inner structure without hurting performance badly. Finally, we
choose (1) as the LSTM block in the following experiments.

Table 2 shows results with different character embedding dimensions. We use
pretrained character embeddings, dropout training, BLSTM-CRF architecture
on all three experiments. Different from results reported by [17] in English, 50
dims is not enough to represent Chinese character. 100 dims achieve 1.83% better
than 50 dims in CNER, but no more improvement is obseved using 200 dims.
We use 100 dims in the following experiments.

Our architecture have several components that have different impact on the
overall performance. Without CRF layer on top, the model does not converge to
a stable state in even 100 epochs using the same learning rate 0.05. We explore
the impact that dropout, radical-level representations, pretraining of character
emebddings have on our LSTM-CRF architecture. Results with different ar-
chitectures are given in Table 3. We find that radical-level LSTM gives us an
improvement of +0.53 in F1 with random initialized character embeddings. It is
evident that radical-level information is effective for Chinese. Pretrained char-
acter embeddings, which is trained using unlabelled Chinese Wikipedia corpus
by unsupervised learning, increase result by +1.84 based on dropout training.
Dropout is important and gives the biggest improvement of +3.88. Radical-level
LSTM makes out-of-vocabulary characters, which are initialized with random
embeddings, close to known characters that have similiar radical components.
Only 3 characters in the training and test set can not be found in Wikipedia
corpus. In other words, there are few characters initialized with random embed-
dings. So we do not find further improvement using both radical-level LSTM and
well pretrained character embeddings. Radical-level LSTM is obviously effective
when there is no large corpus for character pretrainings.

Table 4 shows our results compared with other models for Chinese named
entity recognition. To show the capability of our model, we train our model for
100 epochs instead of 50 epochs in the previous experiments. Zhou2006[31] got



Table 3: Results with different components.

Variant F1
random + dropout 88.91
random + radical + dropout 89.44
pretrain + dropout 90.75
pretrain 86.87

Table 4: Results with different methods. We train our models for 100 epochs in this
experiment. * indicates results in the open track.

Model PER-F LOC-F ORG-F P R F
Zhou2006 90.09 85.45 83.10 88.94 84.20 86.51
Chen2006 82.57 90.53 81.96 91.22 81.71 86.20
Zhou2013 90.69 91.90 86.19 91.86 88.75 90.28
Zhang2006* 96.04 90.34 85.90 92.20 90.18 91.18
BLSTM-CRF + radical 89.62 91.76 85.79 91.39 88.22 89.78
BLSTM-CRF + pretrain 91.77 92.10 87.30 91.28 90.62 90.95

first place using word-based CRF model with delicated hand-crafted features
in the closed track on MSRA data set with F1 86.51%. Chen2006[2] achieved
F1 86.20% using character-base CRF model. Zhou2013[32] used a global linear
model to identify and categorize CNER jointly with 10 carefully designed fea-
ture templates for CNER and 31 context feature templates from [30]. Zhou2013
adopted a more granular labelling schemes for example changing PER tags that
are shorter than 4 characters and begin with a Chinese surname to Chinese-PER.
In the open track, Zhang2006[29] got first place using ME model combining
knowledge from various sources with 91.18%, such as person name list, organi-
zation name dictionary, location keyword list and so on. Our BLSTM-CRF with
radical embeddings outperforms previous best CRF model by +3.27 in overall.
Our BLSTM-CRF with pretrained character embeddings outperforms all the
previous models except for results of Zhang2006 in the open track and achieves
state-of-the-art performance with F1 90.95%. Especially for ORG entities, which
is the most difficult category to recognize, our approach utilizes the capability
of LSTM to learn long-distance dependencies and achieves a remarkable perfor-
mance. The main reason that Zhang2006 obtained better performance than ours
by +0.23 in overall F1 is that they used additional name dictionaries to achieve
very high PER-F while we do not use those dictionaries. Our neural network
architecture does not need any hand-crafted features which are important in
Zhou2013.

6 Conclusion

This paper presents our neural network model, which incorporates Chinese
radical-level information to character-based BLSTM-CRF and achieves state-



of-the-art results. We utilize LSTM block to learn long distance dependencies
which are useful to recognize ORG entities. Different from research focused on
feature engineering, our model does not use any hand-crafted features or domain-
specific knowledge and thus, it can be transfered to other domains easily. In the
future, we would like to transfer our model to Chinese social media domain.
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