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Abstract

Multimodal models have been proven to outperform text-
based approaches on learning semantic representations. How-
ever, it still remains unclear what properties are encoded
in multimodal representations, in what aspects do they out-
perform the single-modality representations, and what hap-
pened in the process of semantic compositionality in dif-
ferent input modalities. Considering that multimodal mod-
els are originally motivated by human concept representa-
tions, we assume that correlating multimodal representations
with brain-based semantics would interpret their inner prop-
erties to answer the above questions. To that end, we propose
simple interpretation methods based on brain-based compo-
nential semantics. First we investigate the inner properties
of multimodal representations by correlating them with cor-
responding brain-based property vectors. Then we map the
distributed vector space to the interpretable brain-based com-
ponential space to explore the inner properties of semantic
compositionality. Ultimately, the present paper sheds light on
the fundamental questions of natural language understanding,
such as how to represent the meaning of words and how to
combine word meanings into larger units.

Introduction

Multimodal models that learn semantic representations us-
ing both linguistic and perceptual inputs are originally moti-
vated by human concept learning and the evidence that many
concept representations in the brain are grounded in percep-
tion (Andrews, Vigliocco, and Vinson 2009). The perceptual
information in such models is derived from images (Roller
and Im Walde 2013; Collell, Zhang, and Moens 2017),
sounds (Kiela and Clark 2015), or data collected in psy-
chological experiments (Johns and Jones 2012; Hill and Ko-
rhonen 2014; Andrews, Vigliocco, and Vinson 2009). Mul-
timodal methods have been proven to outperform text-based
approaches on a range of tasks, including modeling seman-
tic similarity of two words or sentences and finding the most
similar images to a word (Bruni, Tran, and Baroni 2014;
Lazaridou, Pham, and Baroni 2015; Kurach et al. 2017).
Despite of their superiority, what happened inside is hard
to be interpreted and many questions have been unexplored.

Copyright (© 2018, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

5964

For example, it is still unclear 1) what properties are encoded
in multimodal representations, and in what aspects do they
outperform single-modality representations. 2) Whether dif-
ferent semantic combination rules are encoded in differ-
ent input modalities, and how different composition models
combine inner properties of semantic representations. Ac-
cordingly, to facilitate the development of better multimodal
models, it is desirable to efficiently compare and investigate
the inner properties of different semantic representations and
different composition models.

Experiments with brain imaging tools have accumu-
lated evidence indicating that human concept representa-
tions are at least partly embodied in perception, action, and
other modal neural systems related to individual experiences
(Binder and Desai 2011). In summary of the previous work,
Binder et al. (2016) propose the “brain-based componential
semantic representations” based entirely on such functional
divisions in the human brain, and represent concepts by sets
of properties like vision, somatic, audition, spatial, and emo-
tion. Since multimodal models, in some extent, simulate hu-
man concept learning to capture the perceptual information
that is nicely encoded in the human brain, we assume that
correlating them with brain-based semantics in a proper way
would interpret the inner properties of multimodal represen-
tations and semantic compositionality.

To that end, we first propose a simple correlation method,
which utilizes the brain-based componential semantic vec-
tors (Binder et al. 2016) to investigate the inner proper-
ties of multimodal word representations. Our method cal-
culates correlations between the relation matrix given by
brain-based property vectors and multimodal word vectors.
The resulting correlation score represents the capability of
the multimodal word vectors in capturing the brain-based
semantic property. Then we employ a mapping method to
explore how semantic compositionality works in different
input modalities. Specifically, we learn a mapping function
from the distributed semantic space to the brain-based com-
ponential space. After mapping word and phrase represen-
tations to the (interpretable) brain-based semantic space, we
compare the transformations of their inner properties in the
process of combining word representations into phrases.

Our results show that 1) single modality vectors from



different sources encode complementary semantics in the
brain, giving multimodal models the potential to better rep-
resent concept meanings. 2) The multimodal models im-
prove text-based models on sensory and motor properties,
but degrade the representation quality of abstract properties.
3) The different input modalities have similar effects on in-
ner properties of semantic representations when combining
words into phrases, indicating that the semantic composi-
tionality is a general process which is irrespective of input
modalities. 4) Different composition models combine the in-
ner properties of constituent word representations in a dif-
ferent way, and the Matrix model best simulate the semantic
compositionality in multimodal environment.

Related Work
Investigation of word representations

There have been some researches on interpreting word rep-
resentations. Most work investigates the inner properties of
semantic representations by correlating them with linguistic
features (Ling and Dyer 2015; Yogatama and Smith 2015;
Qiu and Huang 2016). Besides, Rubinstein et al. (2015) and
Collell and Moens (2016) evaluate the capabilities of lin-
guistic and visual representations respectively by predict-
ing word features. They utilize the McRae Feature Norms
dataset (McRae et al. 2005), which contains 541 words with
a total of 2,526 features such as an animal, clothing and is
fast. These work can be seen as the foreshadowing of our
experimental paradigm that correlating dense vectors with a
sparse feature space.

Different from the above work, we utilize the brain-based
semantic representations. This dataset contains the basic se-
mantic units directly linked to the human brain, and thus
is more complete and more cognitively plausible to repre-
sent concept meaning. Furthermore, it is worth noting that
all these work does not focus on multimodal representations,
and lacks a direct comparison between unimodal represen-
tations and multimodal representations. This is exactly our
novelty and contribution.

Investigation of semantic compositionality

Semantic compositionality has been explored by different
types of composition models (Mitchell and Lapata 2010;
Dinu et al. 2013; Wang and Zong 2017; Wang, Zhang, and
Zong 2017a; 2017b; 2018). Still, dimensions in many se-
mantic vector space have no clear meaning and thus it is dif-
ficult to interpret how different composition models work.
Fyshe et al. (2015) tackle this problem by utilizing sparse
vector spaces. They use the intruder task to quantify the in-
terpretability of semantic dimensions, which needs manual
labeling and the results are not intuitive. Li et al. (2015) use
visualizing methods by projecting words, phrases and sen-
tences into two-dimensional space. This method shows the
semantic distance between words, phrases and sentences,
but can not explain what happened inside composition.

The semantic compositionality in computer vision does
not receive as much attention as in natural language area.
To our best knowledge, the following two studies are most
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relevant to our work. Nguyen et al. (2014) model composi-
tionality of attributes and objects in the visual modality as
done in the case of adjective-noun composition in the lin-
guistic modality. Their results show that the concept topolo-
gies and semantic compositionality in the two modalities
share similarities. Pezzelle et al. (2016) investigate the prob-
lem of noun-noun composition in vision. They find that a
simple Addition model is effective in achieving visual com-
positionality. This paper takes a step further, and provides
a direct and comprehensive investigation of the composi-
tion process in both linguistic and visual modalities. Further-
more, we conduct a pioneer work on multimodal semantic
compositional semantics, in which multi-modal word rep-
resentations are combined to obtain phrase representations.
Taken together, our work offers some insights into the be-
havior of semantic compositionality.

Human concept representations and composition

Classical componential theories of lexical semantics assume
that concepts can be represented by sets of primitive fea-
tures, which are problematic in that these features are them-
selves complex concepts. Binder et al. (2016) tackle this
problem by resorting to brain imaging studies. They propose
the “brain-based componential semantics” based entirely
on functional divisions in the human brain, and represent
concepts by sets of properties like vision, somatic, audition,
spatial, and emotion. The brain-based semantic representa-
tions are highly correlated with the brain imaging data, and
have been used as an intermediate semantic representations
in exploring human semantics (Anderson et al. 2016).

There is previous work exploring the question of seman-
tic composition in the human brain (Chang 2011; Fyshe
2015). To infer how semantic composition works in the
brain, they conduct brain imaging experiments of partici-
pants viewing words and phrases, and analyze these data
by adopting vector-based composition models. Results illus-
trate that Multiplication model outperforms Addition model
on adjective-noun phrase composition, indicating that peo-
ple use adjectives to modify the meaning of the nouns. Un-
like these work, this paper aims to interpret the inner prop-
erties of different composition models in achieving compo-
sitionality. We hope that the proposed method can feed back
into neuroscience to help exploring human concept repre-
sentations and composition.

Brain-based Componential Semantic
Representations

The brain-based componential semantic dataset is proposed
by Binder et al. (2016), which contains 535 different types
of concepts'. Each concept has 14 properties, i.e., vision,
somatic, audition, gustation, olfaction, motor, spatial, tem-
poral, causal, social, cognition, emotion, drive, attention,
and each property contains several attributes (1~15). For
instance, the vision property is described with attributes
of bright, dark, color, pattern, large, small, etc. Through

'"These are 122 abstract words and 413 concrete words in-
cluding nouns, verbs and adjectives. The dataset can be found at:
http://www.neuro.mcw.edu/resources.html
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Figure 1: Brain-based componential semantic representa-
tions for concepts happy (top) and dog (bottom). The X-axis
denotes attributes (only parts shown) and the Y-axis denotes
attribute ratings.

crowd-sourced rating experiments, each attribute of all 535
concepts is assessed with a saliency score (0~6). Figure 1
shows two examples of the brain-based semantic vectors.
Consistent with intuition, the concept happy as an abstract
adjective gets more weights on abstract properties, while the
concrete concept dog gets more weights on sensory and mo-
tor properties. Moreover, via extensive experiments, Binder
et al. observe that the brain-based semantic vectors capture
semantic similarities and correlate well with the priori con-
ceptual categories, which prove the validity of the dataset.

Inner Properties of Multimodal
Representations
Experimental design

Dissimilarity matrices of
brain-based representations

@

Dissimilarity matrix of
distributed representations

.13 I&‘;"" =

Figure 2: The right dissimilarity matrix is calculated by co-
sine distance between vectors of each concept pair. The left
dissimilarity matrices are calculated by the Euclidean dis-
tance between different property vectors of each concept
pair. The proposed method calculates the correlations be-
tween the dissimilarity matrices given by the brain-based
vectors and the distributed representations.

To investigate the inner properties of multimodal repre-
sentations, we adopt the method of representational sim-
ilarity analysis (RSA) (Kriegeskorte, Mur, and Bandettini
2008). As shown in Figure 2, our method involves three
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steps as follows. (1) For specific distributed representations,
we calculate the cosine distance for each word pair in a set
of n words (those that appear in both distributed and brain-
based vectors), resulting in a dissimilarity matrix with a size
of n x n. (2) For brain-based representations, each word
corresponds to 14 property vectors. Following Kriegeskorte
et al. (2008), we calculate the Euclidean distance? for each
word pair (in a set of n words) with different property vec-
tors separately. Each property leads to a dissimilarity matrix
and consequently we get 14 dissimilarity matrices. These are
n X n matrices which characterize different semantic aspects
of concepts in the brain. (3) We use the Pearson rank corre-
lation coefficient to calculate the relationships between the
dissimilarity matrices given by the brain-based vectors and
the distributed representations.

The underlying hypothesis of our method is that if two
dissimilarity matrices from different semantic representa-
tions have high correlations, then these two representations
encode some of the same information. For our method, the
two semantic representations are distributed and brain-based
property vectors (which characterize the basic semantic as-
pects of concepts). Therefore, the higher correlation score
means that the specific brain-based semantic property is
more encoded in the distributed representations.

Unimodal and multimodal word representations

Linguistic vectors. We use the text corpus of Wikipedia
2009 dump?, which comprises approximately 800M tokens.
We discard words that appear less than 100 times and train
linguistic vectors by the Skip-gram model (Mikolov et al.
2013). We use a window size of 5, set negative number as 5
and iteration number as 3. We finally get 88,501 vectors of
300 dimensions.

Visual vectors. We use visual corpus of ImageNet (Deng
et al. 2009), in which we delete words with less than 50 pic-
tures, and sample at most 100 pictures for each word. To
extract visual features, we use a pre-trained VGG-19 CNN
model* and extract the 4096-dimensional activation vector
of the last layer. The final visual vectors are averaged feature
vectors of multiple images of the same word, which contains
5,523 words of 4096 dimensions.

Auditory vectors. For auditory data, we gather audios
from Freesound?, in which we select words with more than
10 sound files and sample at most 50 sounds for one word.
Following Kiela and Clark (2015), we use the Mel-scale Fre-
quency Cepstral Coefficient (MFCC) to obtain acoustic fea-
tures, calculate their bag of audio words (BoAW) represen-
tations, and obtain the auditory vectors by taking the mean
of the BOAW representations of the relevant audio files. We
finally get 7,051 vectors of 300 dimensions®.

Multimodal Vectors To learn multimodal vectors, we

>The metric of cosine similarity can not be adopted here be-
cause a few property vectors of certain concepts are zero vectors.

3http://wacky.sslmit.unibo.it

“http://www.vlfeat.org/matconvnet/pretrained/

>http://www.freesound.org/

%We build auditory vectors with the tool at : https://github.com/
douwekiela/mmfeat



choose Ridge (Hill, Reichart, and Korhonen 2014) and MM-
skip (Bruni, Tran, and Baroni 2014), which are best perform-
ing multimodal models. The Ridge model, which utilizes the
ridge regression method, first calculates the mapping matrix
from linguistic vectors to perceptual vectors, and then pre-
dicts the perceptual vectors of the whole vocabulary in lin-
guistic dataset. Finally, the multimodal representations are
concatenation of the [, normalized predicted vectors and
linguistic vectors’, which results in 600-dimensional vec-
tors for 88,501 words. In contrast, the MMskip model in-
jects perceptual information in the process of learning lin-
guistic representations by adding a vision-based objective
function®. This objective function is to maximize the dis-
tance between positive examples (linguistic vector and its
visual vector) and negative examples (linguistic vector and
randomly sampled visual vectors). Finally this model gets
88,501 vectors of 300 dimensions.

Experimental results

Based on the proposed correlation method, we first in-
vestigate what properties are encoded in different single-
modality vectors. Next we explore in what properties that
multimodal vectors® perform better than single modality
ones, and how they perform on concrete and abstract words
respectively.
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Figure 3: Correlations between dissimilarity matrices from
single-modality representations and different brain-based
property vectors. Top figure shows the results of three
single-modality vectors, which cover 530, 202, 436 words
of the brain-based vectors respectively. For fair comparison,
we show results of overlapping words (188 words — mostly
concrete nouns) in the bottom figure.

Single-modality representations Figure 3 shows the in-
ner properties of linguistic, visual and auditory representa-
tions, in which the top and bottom figures show the same

"We implement Ridge model with Sklearn (http://scikit-learn.
org/).

8The MMskip model is implemented with Chainer (http:/
chainer.org/)

The multimodal vectors in this paper are calculated with lin-
guistic and visual inputs, because auditory inputs greatly decrease
model performance.
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trends, demonstrating that these vectors encode different se-
mantic aspects of concepts. For instance, linguistic vectors
are better at encoding abstract properties like social and cog-
nition, auditory vectors mainly captures vision and audition
properties, while visual vectors mainly capture properties
like vision, motor and spatial. This result indicates that com-
bining different modality inputs has the potential to better
represent concept meanings.
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Figure 4: Correlation between dissimilarity matrices from
the distributed representations and different brain-based
property vectors.

Multimodal representations As shown in Figure 4, we
can see that compared with linguistic vectors, multimodal
vectors from Ridge model have stronger ability on encoding
sensory and motor properties but weaker ability on encod-
ing abstract properties. The above results indicate that the
visual inputs, which are better at capturing sensory and mo-
tor properties, enhance these information conveyed in lin-
guistic representations. On the contrary, the visual inputs
contradict abstract properties conveyed in linguistic repre-
sentations. Especially, the Ridge model achieves the most
improvement on gustation and olfaction properties, because
these two properties are significantly captured by the pre-
dicted visual vectors. From Figure 4, we can also see that
the MMskip model generates multimodal vectors which are
similar with (and slightly better than) linguistic vectors. This
is because words with visual vectors account for only 5% of
the text corpus.

Concrete vs. abstract words Figure 5 shows the inner
properties of semantic representations on concrete and ab-
stract words respectively. It can be seen that both unimodal
and multimodal vectors perform differently on concrete and
abstract words. For concrete words, they capture much more
inner properties like vision and social. For abstract words,
they encode more inner properties like spatial and cognition.
Moreover, multimodal vectors achieve lower scores than lin-
guistic vectors on most properties on abstract words. To fig-
ure out the reason, we look into the brain-based semantic
dataset. We find that abstract concepts have higher attribute
scores than concrete concepts on abstract properties (i.e.,
spatial, temporal, causal, social, cognition, emotion, drive,
and attention), which are poorly captured by visual vectors
(the average attribute score is 3.84 and 3.14 respectively).
This would lead to performance drop of multimodal mod-
els on abstract concepts when mixing with visual inputs. In
conclusion, the perceptual input may not be a valuable infor-
mation for abstract concepts in building multimodal models.



~—&—Linguistic =-®--MMskip Ridge-regression

Concrete words

0.4
0.3 + &
0.2 ,L'\\ii%
e
0-1 77%77 .
0 T T T T T T
0.4 Abstract words
02 I8 J/i
0.1 —\@b—ﬁ ——y
R y
0 T - T T T T T T T e
c L ©c < €€ ¥ T ® ® ® £ € o <
2 S 8 ¢ 8 &®
2822288533822 35 2
>ETfEeEgE8ER7 g
v o ® 3§ 9] o o =1
oo - o @©

Figure 5: Correlations between dissimilarity matrices from
distributed representations and different brain-based prop-
erty vectors on concrete words (top) and abstract words (bot-
tom) respectively.

Inner Properties of Semantic Composition
Experimental design

Distributed vector space Brain-based componential space

Dim 1 2 300 Dim vision audition...drive
dog[0.12-0.03.. 0.08] |Mapping| dog[4.322.56.. 1.08]
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redcar[# # #.. #

Figure 6: Outline of experimental design. The proposed
method maps words and phrases in the distributed vector
space to the brain-based componential space.

To inspect what happened inside semantic composition-
ality, we design a mapping method to intuitively compare
different composition models. The idea behind this method
is that via comparing phrase and their constituent word rep-
resentations in an interpretable vector space, we can observe
the changes of inner properties in the process of composi-
tion. We hypothesis that there exits a linear/nonlinear map
between distributed semantic space and brain-based com-
ponential space if the distributed representations implicitly
encode sufficient information'?.

Figure 6 shows how word and phrase embeddings are
mapped to brain-based componential vectors. Specifically,
we use [y-normalized word vectors x in distributed vector
space and word vectors y in brain-based componential space
to learn a mapping function f : y = f(z). Then we map
distributed vectors of words and phrases (which are l» nor-
malized) to the brain-based componential space using the

"°Qur experimental results show that linear mapping method
works better than non-linear methods. Thus we only report results
of linear mapping method.
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learned mapping function. For linear map, we use the least
square method to learn f. For nonlinear map, we train a mul-
tiple layer perceptron (MLP) neural network. In this paper,
we begin our analysis with adjective-noun phrases, where
adjectives are used to modify the meaning of nouns. We train
the mapping models on the randomly selected 90% of the
words and tune parameters on the left words, in which words
include 434 nouns and 39 adjectives in the brain-based se-
mantic dataset.

Unimodal and multimodal phrase representations

Visual vectors This paper chooses the visual genome
dataset (Krishna et al. 2017) to learn visual representations,
because it contains large annotations of attribute-object pairs
(adjective-noun phrases) and their corresponding regions in
an image. From this dataset, we extract 2,105,977 adjective-
noun pairs. We then delete the phrases which contain adjec-
tives that appear less than 50 times or nouns that appear less
than 30 times. To generate phrase vectors, we extract image
features with the pre-trained VGG-19 CNN model and cal-
culate the averaged feature vectors of multiple images of the
same phrase. Finally we get 4096 dimensional vectors with
a vocabulary of 6,874 phrases.

Based on visual phrase representations, we generate ad-
jective and noun vectors in the same semantic space. Specif-
ically, each word appears in multiple phrases and we cal-
culate the word vectors by averaging their phrase vectors.
Finally we get 1,552 word representations.

Linguistic vectors Similar to the linguistic vectors in
the previous section, we utilize Skip-gram model and the
same text corpus. One difference is that we conduct an extra
preprocessing step that combines candidate adjective-noun
phrases (i.e., treat phrase as a unit) in the text corpus. This
allows the Skip-gram model to generate word and phrase
representations simultaneously. For fair comparison, we se-
lect the same adjective-phrases as the visual phrases.

Multimodal vectors Since the above linguistic and visual
vectors share the same vocabulary, we adopt the concatena-
tion method to generate multimodal word and phrase rep-
resentations. Specifically, we concatenate the [ normalized
linguistic and visual representations, which results in 600-
dimensional vectors for 6,874 phrases and 1,552 words.

Composition models

To investigate how different composition models combine
the inner properties of constituent word representations, we
make a systematic comparison of five different composition
models as follows:
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Word/Phrase

Visual modality

Linguistic modality

black
circle

black man, black bag, black top
white circles, small circles, red circles

white, colored, blue

black circle

circles, round holes, holes

circles, three circles, large circles
blue circles, red circles, green circles

sliver
medal
silver medal

steel, shiny, metallic
silver medal, gold medal, red hearts
medal, moon, white circle

gold, bronze, gold medal
gold medal, silver medal, bronze
gold medal, medal, bronze

happy happy man, funny, young
face white face, round face, clock
happy face facial, facial hair, sad face

happy person, happy family, sad
faces, white mask, silver mask
wide eyes, long eyelashes, brown suit

Table 1: Top 3 nearest neighbors of an example phrase and its constituent words.

Addition  Multiplication =~ Matrix W-addition Dan

Q1Q2Q3 QI Q2 Q3 QIQ2Q3 Q1Q2Q3  QIQ2Q3
Text 536 158 1332 3460 5462 9 61 227 536 157 15 85 295
Image 928091 1366 3796 5881 623 66 92890 82878
Multimodal 4 33 190 11253064 5180 0426 432194 21271

Table 2: Rank evaluation of different composition models. The smaller value, the better performance.

where x; denotes word representations, n = 2 is the number
of words in a phrase, and {W,, W,,, W,} € R?*4 are train-
able parameters. The nonlinear activation function f used
here is tanh.

Following Diam (2015), we adopt a mean square error
(MSE) objective function to estimate the modal parameters:

J = min(||peomp — pgotall” + M (IWal®), (1)

where peom)p s the compositional phrase vector calculated
by composition models, and py.;q is the gold phrase vector
that directly learned from data. Moreover, we use regulariza-
tion coefficient A; on model parameters {W,,, W,,,, W;}. In
the experiment, the phrase vectors are randomly partitioned
into training, testing and development splits in 7:2:1. Note
that we do not train the embedding vectors along with the
composition models. Although this could potentially benefit
the results, we aim to explore the effects of different compo-
sition models in different input modalities.

Experimental results

To intuitively show the characteristic of learned word and
phrase representations in visual and linguistic modalities,
we calculate their nearest neighbors using cosine similar-
ity. Based on the proposed mapping method, we first inves-
tigate the inner properties of semantic compositionality in
linguistic and visual modalities respectively. Next we em-
ploy a quantitative analysis to inspect the ability of differ-
ent composition models in capturing the composition rules
contained in different modality inputs. After that we explore
the effects of different composition models on multimodal
compositional semantics. Finally, we show an example to
see the inner properties changes in combining words into
phrases.
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Word and phrase representations As shown in Table 1,
the semantic representations in linguistic and visual modali-
ties show different characteristics. In visual modality, words
and phrases with similar shape are nearest neighbors, such as
black circle and holes, face and clock. Moreover, the nearest
neighbors of a word in visual modality are sometimes the
phrases that begin with this word, for example the nearest
neighbors of black are black man, black bag, black top. This
is because visual word vectors are calculated as the averaged
phrase vectors. As in linguistic modality, semantic represen-
tations are learned from text corpus, thus there are morpho-
logical similar words group together like circle and circles,
face and faces. There are also nearest neighbors which are
semantic related phrases, such as happy face with its nearest
neighbors of wide eyes and long eyelashes.

Semantic compositionality To investigate the inner prop-
erties of semantic compositionality contained in linguistic
and visual inputs, we adopt the proposed mapping method to
compare the representations of nouns and its adjective-noun
phrases in brain-based componential space. For fine-grained
analysis, we divide the adjectives into four categories: spa-
tial (e.g., small, big), somatosensory (e.g., hot, heavy), visual
(e.g., white, shiny), and emotional (e.g., happy, angry).
Figure 7 shows the absolute mean property difference
between nouns and its adjective-noun phrases. We can see
that linguistic and visual modalities show the same char-
acteristic: the adjectives mostly affect properties of vision,
motor, social, and drive. This indicates that semantic com-
positionality is a general process which is irrespective of
input modalities. Another observation is that different ad-
jectives have different effects on semantic compositionality.

11

"In this paper, each property contains several attributes and the
property difference is its average attribute difference.
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Figure 7: Mean property difference between nouns and its adjective-noun phrases (in 4 categories) in linguistic modality (top)
and visual modality (bottom). The black dotted line show the average value on all category phrases.

For example, the emotional adjectives have the greatest im-
pact on the inner properties of their modified nouns, espe-
cially on social, vision, audition and motor properties. The
somatosensory adjectives mostly influence gustation, olfac-
tion, vision and somatic properties, while the visual and spa-
tial adjectives mostly influence motor and drive properties.

Composition models To compare different composition
models in unimodal and multimodal environment, we em-
ploy the rank evaluation method (Dima 2015) which calcu-
lates the rank of similarity between a predicted phrase vec-
tor and its gold phrase vector in similarity between the pre-
dicted phrase vector and vectors of all phrase vocabulary.
Specifically, we compute the first, second and third quartiles
(Q1, Q2, Q3) across the test phrases. A Q1 value of 2 means
that the first 25% of the data is only assigned ranks 1 and
2 (i.e., the phrase vectors predicted by the first 25% of data
are all most or second most similar to their corresponding
gold phrase vectors). Similarly, Q2 and Q3 refer to the ranks
assigned to the first 50% and 75% of data, respectively.

As shown in Table 2, the Addition model achieves the
best result on linguistic modality, and the Matrix model ob-
tains the best performance on visual and multimodal modal-
ities. The Multiplication model, which is considered to be
the most appropriate strategy for human semantic compo-
sitionality (Chang 2011), is not suitable for our distributed
representations. Furthermore, we can see that composition
models perform better in multimodal environment, indicat-
ing that multimodal information provides a better ground for
semantic compositionality.

Multimodal compositional semantics Based on the pro-
posed mapping method, we calculate the attribute difference
between representations of nouns and its adjective-noun
phrases in brain-based componential space. We find that dif-
ferent composition models have different effects. Take the
composition of old man (in multimodal environment) for ex-
ample, the Addition model gets lower values on attributes of
biomotion, body, speech, etc. and higher values on temporal
related attributes, while the Multiplication model achieves
lower values on attributes like biomotion, face and body, and
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higher values on attributes like colour, scene and time.

To further investigate the effects of different composition
models on multimodal compositional semantics, we divide
the nouns into 7 categories: place (e.g., street, mountain),
human (e.g., boy, family), animal (e.g., bird, dog), body part
(e.g., hair, eye), tool (e.g., glass, football), vehicle (e.g., car,
truck), and food (e.g., cheese, coffee). Together with the four
kinds of adjectives, we divide all phrases in brain-based
dataset into 19 categories'?. For each category of phrases,
we compute its absolute mean difference between nouns and
its adjective-noun phrases on all brain-based semantic at-
tributes, in which phrase representations are combined by
different composition models.

—a— Addition

—e— Matrix

—#&— Multiplication —— W-addition

~—+—Dan

visual & place
visual & body |
visual & human |
visual & animal |
visual & tool
visual & food
visual & vehicle |
spatial & place
spatial & body
spatial & human 1
spatial & animal
spatial & tool |
spatial & food
spatial & vehicle
soma & place |
soma & animal
soma & food
soma & vehicle
emotion & human |

Figure 8: Mean property difference between nouns and its
adjective-noun phrases (in 19 categories) in multimodal en-
vironment, in which phrase representations are obtained by
5 different composition models.

As shown in Figure 8, the composition models with pa-
rameters (i.e., Matrix, W-addition, Dan) achieve smaller val-

2We use the category annotations in brain-based semantic
dataset (Binder et al. 2016). Specifically, we select adjective cat-
egories that contain more than 5 words and noun categories that
contain more than 10 words.
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Figure 9: Attribute ratings for man,
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Cognition |
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Disgusted | X§
Arousal

old man directly extracted from data and old man calculated by composition models in

linguistic (top), visual (midddle) and multimodal (bottom) environment.

ues than the models without parameters (i.e., Addition, Mul-
tiplication), in which Matrix model achieves the smallest
value. In other words, the phrase vectors predicted by the
Matrix model are most similar with their constituent noun
vectors. This result indicates that the composition models
with parameters put more importance weights on nouns in
composition of adjective-nouns phrases.

An example Figure 9 shows an example word man and
phrase old man in brain-based componential space, which
are mapped from distributed vector space with the proposed
mapping method. The “old_man” line in the figure, which is
the representation of phrase old man directly extracted from
the corpus, can be seen as the standard phrase representa-
tions, and they show the similar trend in linguistic, visual
and multimodal environment. Nevertheless, there are slight
differences. For instance, in linguistic modality, the old man
achieve higher values on long, duration, time, landmark,
etc. attributes, while in visual modality the old man achieve
higher values on pattern, weight, texture, etc. attributes.
The Dan model and W-addition model have similar char-
acteristics with Matrix and Addition model respectively,
which we do not shown in the figure for clarity. The three
different composition models in Figure 9 shows different
characteristics. The Addition model gets higher value on
attributes like duration, long, time, number, sad, taste, and
lower vlaue on attributes like biomotion, motion, human,
head, upperlimb, speech. The Multiplication model obtains
higher value on attributes like bright, color, small, num-
ber, time, communication, and lower value on attributes like
biomotion, face, human, body, speech. The Matrix model
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gets higher value on attributes like scene, duration, social,
long, pain, cognition, and lower value on attributes like
biomotion, body, human, speech, face. Taken together, we
conclude that different composition models have different
effects on inner properties of semantic representations.

Conclusion and Future Work

In this paper, we utilize the brain-based componential se-
mantics to investigate what properties are encoded in seman-
tic representations and how different composition models
combine meanings. Our results shed light on the potential of
combing representations from different modalities, building
better multimodal models by distinguishing different types
of concepts, and learning semantic compositionality in mul-
timodal environment.
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