Online handwriting recognition: past, present and future

Masaki Nakagawa

Tokyo University of Agriculture and Technology

ICFHR 2016

October 23-26, 2016
Table of Contents

1. Brief history of online handwriting recognition
2. Potentials of handwriting input and UI
3. Architecture of recent online handwriting recognition systems
4. Handwriting input to mobile devices
5. Future research topics
 - computer-assisted and automated marking of handwritten answers
Brief history of online handwriting recognition
Rand Tablet in 1964

http://itsexplore.blogspot.jp/2013/07/history-of-tablet-pcs-pictorial.html
Sutherland and Sketchpad

[I] Sketchpad (left), created in 1962 by Ivan Sutherland at Massachusetts Institute of Technology’s Lincoln Laboratory in Lexington, is considered the first computer with a windowing interface. More than 1200 of the experimental Alto (right), developed in 1973 by the Xerox Palo Alto Research Center, were distributed to test its windows, menus, and mouse.

The Computer Museum
Mouse by D. Engelbert

The first mouse made in 1964.

http://www.geek.com/hardware/40-years-of-the-mouse-a-guided-tour-1369967/
Started on RAND tablet from:

Small memory space (64 Kilo bytes) and Slow CPU (Mini computer and μ processor ~ 1 Mips)

Heuristics, Decision tree, Syntactic, Structural, Grammar, Primitives and Confusion matrix, Fourier coefficients, Statistical for a small category set, Feature points, etc.

Expected to establish the technology but realized how noisy and distorted human writing patterns are.

Long journey started to relax writing constraints.
1980～2000

- **Moore’s Law**
 - CPU of several Mips and memory of Mbytes is common

- **Development of LCD display: Tablet → LCD display integrated tablet**
 - Direct pointing and direct manipulation

- **Innovative products**

- **Platforms**
 - PenPoint by GO
 - Windows for Pen by Microsoft

- **But, no break until 2010’s**
Recognition techniques around 2000

- **Statistic, Stochastic**
 - DP -> HMM, Time-delayed NN, Bayesian Net, MRF, etc.

- **Shape context**

- **Combination of online and offline methods**

- **Language model or Linguistic context**

- **Large pattern DB (UNIPEN and TUAT)**
On-line and Off-line Recognitions

- On-line recognition usually works on an on-line pattern: a time sequence of pen-tip coordinates (digital ink).
- Off-line recognition works on a bit-map image.
- Off-line recognition can be also applied by transforming digital ink to a bit-map.
- Both on-line and off-line methods can be employed.

<table>
<thead>
<tr>
<th>Method</th>
<th>advantage & disad.</th>
<th>advantage</th>
<th>disadvantage</th>
</tr>
</thead>
<tbody>
<tr>
<td>On-line recognition</td>
<td>robust to stroke connection and distortion</td>
<td>not robust to wrong stroke order and duplicated strokes</td>
<td></td>
</tr>
<tr>
<td>Off-line recognition</td>
<td>Free from wrong stroke order and duplicated strokes</td>
<td>not robust to stroke connection and distortion</td>
<td></td>
</tr>
</tbody>
</table>
No break until beginning of 21st C

- Market did not expand. Companies shrank R & D or even retreated.

- Crash of Bubble Economy and IT bubbles.

- Rubbish stock? But, it might be a blue chip in future. University laboratory can continue.
When you have a big task or difficult task, you can see your mental capacity or toughness.

When you are in favorable circumstance or in unfavorable circumstance, you can see your prudence, mental tolerance or stability.

...

in 呻吟語 by 呂 新吾
Recent 10 Years

Pen and paper devices (storing digital ink without PC)

Conventional LCD integrated tablets

Smart phones and Tablets, ...

From Web’s of Anoto. Fujitsu, Nintendo and Apple
Research progresses

- Deep Neural Networks and Deep Learning

- HMM \rightarrow RNN, LSTM, Bidirectional LSTM, Multi-Dimensional LSTM, ...

- QDF, Modified QDF \rightarrow CNN, ...

Copyright by Masaki Nakagawa
Online handwriting Databases

- UNIPEN (English)
- TUAT (Japanese)
- IRONOFF (French and English)
- CASIA (Chinese)
- SCUT (Chinese)
- IAM-OnDB (English)
- IBM-UB (English)
- AltecOnDB (Arabic)
- VN-OnDB (Vietnamese)
- CROHME for (Math)

- Any other? (Please teach me!)
Survey papers

Up to 1990

Potentials of handwriting input and user interface
Potentials of Handwriting-based UI

- **Handwriting itself is universal**, although character recognition is language dependent.
 - European, American, Asian, Arabic, etc. or math, even pictorial languages can be expressed using a single pen.
- One can express one's thinking most easily with a pen.
- Thinking is not interrupted by the actions for writing.
- Thinking and writing form feedback loop to grow one's idea.
 - Creative work rather than labor-intensive tasks.
 - Speech is transient. We cannot interact with spoken words.
- Much richer information rather than just codes.
- One can express graphics **inexpressible by phonetics**.
- Scalable for small, medium and large surfaces.
 - PDA, tablet, interactive board, ...
- Direct pointing and manipulation: Indirect P. & M. → Indirect P. and direct M. → Direct P. & M.

Creative UI,
UI friendly to children and elder people,
UI for peoples who use large character sets.
v.s. Speech Interface

- **Speech is transient**
 Speech and sound can be recorded, but will you use speech and voice recorder rather than pen and paper to solve mathematical equations? On the other hand, you can interact with your handwriting. Write down your idea, interact with it and extend it.

- **Speech is not effective to express diagrams**
 Imagine to convey math expressions, diagrams, maps, etc. by phone. On the other hand, you can write them down.

- **Speech is exclusive**
 Multiple people cannot talk at the same time. Noisy and recognition rate is damaged. On the other hand, they can write at the same time.

But, handwriting is not exclusive to speech. Both speech and handwriting compensate for each other.
Requirements for Recognizer

- High recognition rates (top N best rate)
- Robustness to distortions or deformations
- Order variations, delayed or duplicated strokes
 - Handwriting -> Haandwriiting (in speech)
 - Handwriting -> Hnadwirtign -> Hnaddwwirtiggn (in writing)
- High speed
- Low memory space
- Last resort
 - You must be able to input a character as far as you write it neatly even if stroke order is wrong and some strokes are repeated.
 - Dependence on stroke order must be avoided.
- Transparency
 - Not to lose user confidence, and to afford user adaptation to the system.
 - If not, users verify recognition results every time. Damage the merit of pen interface.
- Machine adaptation to individual user
Architecture of recent online handwriting recognition systems
Architecture of On-line Text Recognizer (Segmentation free)

Input handwritten text

Feature extraction

Temporal character recognition

Decoding best path

Recognized text output

On-line feature (stroke, point, direction), Off-line feature (histogram, gradient), Hybrid ...

Time series pattern classification

RNN, LSTM, MRF, ...

Linguistic context eval.

N-gram, RNN LM, ...

Lexicon-free, Lexicon-driven, Beam search, Viterbi, …
Architecture of On-line Text Recognizer (Over-segmentation)

Input handwritten text

Hypothetical segmentation

Character recognition

Best path search

Recognized text output

On-line feature (stroke, point, direction),
Off-line feature (histogram, gradient), Hybrid ...

Coarse classification

On-line recognition

Off-line recognition

Geometric context eval.

Linguistic context eval.

HMM, MRF, CRF, BLSTM, ...

HMM, MQDF, CNN, ...

QDF, ...

N-gram, RNN, ...

SVM, NN, ...

MCE, GA, ...

MCE, GA, ...

GA, MCE, Beam S., Viterbi, ...

FDA, PCA, ...

GA, MCE, Beam S., Viterbi, ...

HMM, MQDF, CNN, ...

QDF, ...

N-gram, RNN, ...

GA, MCE, Beam S., Viterbi, ...

HMM, MRF, CRF, BLSTM, ...

HMM, MQDF, CNN, ...

QDF, ...

N-gram, RNN, ...

GA, MCE, Beam S., Viterbi, ...

HMM, MRF, CRF, BLSTM, ...

HMM, MQDF, CNN, ...

QDF, ...

N-gram, RNN, ...
Evaluation Function

\[f(X, C) = \left[\lambda_{11} + \lambda_{12} (k_i - 1) \right] \log p(c_i | c_{i-2} c_{i-1}) + \left[\lambda_{21} + \lambda_{22} (k_i - 1) \right] \log p(b_i | c_i) + \left[\lambda_{31} + \lambda_{32} (k_i - 1) \right] \log p(q_i | c_i) + \left[\lambda_{41} + \lambda_{42} (k_i - 1) \right] \log p(p_i^u | c_i) + \left[\lambda_{61} + \lambda_{62} (k_i - 1) \right] \log p(p_i^b | c_{i-1} c_i) + \left[\lambda_{51} + \lambda_{52} (k_i - 1) \right] \log p(x_i | c_i) + \lambda_{71} \log p(g_j | Sb) + \lambda_{72} \sum_{j=j_1+1}^{j_1+k_i+1} (k_i - 1) \log p(g_j | Sw) \]

Linguistic context

Geometric context

Evaluated by character recognizer

Segmentation Point Evaluation

Handwriting input to mobile devices
Preinstalled in Smartphone & Tablet

7notes with mazec-T for SAMSUNG
Legal Notices

7notes with mazec-T for SAMSUNG Copyright
2011 MetaMoji Corporation

OpenWnn
Licensed under Apache 2.0 by OMRON SOFTWARE CO., LTD.

NAIST Japanese Dictionary
Copyright 2008, Nara Institute of Science and Technology, Japan. All rights reserved.
Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met:
Redistributions of source code must retain the
Worldwide

- More than 10% people use handwriting input in China, and this number is increasing.

- Myscript provides online handwriting recognition for 64 languages.

- Google provides online handwriting recognition for 97 languages.

- ...
Overlaid Characters Recognition

- Hand-held devices have become popular
 - Smart phones, mini tablet PCs, smart watches

Writing area is too small to write text.

To input text messages by overlaid handwriting

```
my country

吉 mús 寺

車で九州に行き
```
Publications

■ Early works in Japanese

■ in English

■ in Chinese
Air-writing as Extension

- Write by **finger in the Air** (Air-writing)
 - Devices providing a natural way to interact with computers
 - Microsoft Kinect sensor or Leap motion
 - Research works
 - Write Chinese characters in the air [1,2]
 - Write overlaid English characters only for uppercase with the predefined stroke order [3]

Character-position-free Handwriting

- Writing without **wrist or elbow support and without** visual feedback.

Recognized surprisingly well due to context without character pitch information.
Database

- Using **Kondate database**
- Make 4 models to produce character-position-free handwritten text patterns

今日の南犬立

Model 1 → Dataset 1
0.5 to 1.0 spacing

Model 2 → Dataset 2
0.4 to 1.5 spacing

Model 3 → Dataset 3
Overlaid

Model 4 → Dataset 4
-1 to 1 in horizontal & vertical
Character-position-free Handwriting

Recognition Result: character recognition rate

- Candidate segmentation method (CSM)
- Undecided segmentation method (USM)
- Using 4-fold cross-validation method

Analysis:
- USM is better than CSM.
- For Dataset 4, the evaluation of geometric context is not effective.
Recognition Result: speed
- Candidate segmentation method (CSM)
- Undecided segmentation method (USM)
- Using 4-fold cross-validation method

The average recognition time per character (second)

Analysis:
- USM is slower than CSM.
- For Dataset 3 (Overlaid), due to the loss of the spacing, the constructed lattice is bigger than others.
Application to “true” Mobile Device

- Candidate Segmentation Method (CSM) and Undecided Segmentation Method (USM)
- USM is better than CSM
- Proposed USM has been employed for MIRAI 3 xDAS assisted-driving concept car

Future research topics
computer-assisted and automated marking of handwritten answers
Examination is essential to evaluate student’s learning and ability.

Marking exams takes large time and effort.

If it takes time to return the marking result, the effect of review by student decreases.

Introducing IT: mark sheet, Computer/Web based testing, … Select rather than solve.

Are they compromises?

Marking errors are sometimes exposed after the alternative course of an applicant is determined.

Is it true information disclosure?
Functional Model of Exam and Marking

- Problem solving ability and deep understanding: x
- Exam g
 - $g(x)$
- Answer
 - 3.6×2.7
 - 2.542
 - 7.2
 - 9.72
- Marking f
 - $f(g(x))$
- Score
 - 3.6×2.7
 - 2.542
 - 7.2
 - 9.72

Selective measuring

- Descriptive evaluate P.S. ability and deep understanding
- Selective inadequate measuring
- Q1: $3.6 \times 2.7 = \begin{align*} &\text{① 7.3} \\ &\text{② 9.72} \\ &\text{③ 97.2} \end{align*}$

- Machine Check
 - High speed
 - Few errors
- Human Marking
 - Time & Effort, Errors

Mark sheet

- Correct
 - Q1 ②

Side effect: Select rather than solve

Table:

<table>
<thead>
<tr>
<th></th>
<th>Answer</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q1</td>
<td>③</td>
<td>0</td>
</tr>
</tbody>
</table>
Unified Entrance Exam in Japan

- Exam to enter almost all universities
- **Descriptive questions will be included from 2020**
 - To evaluate students’ problem solving ability and deep understanding.
 - To foster the ability and attitude to think rather than select.

- **500,000 applicants sit for the exam all over Japan.**
 - It is difficult to employ any electronic devices without troubles at the moment.
 - Only a couple of weeks are allowed for marking.

- It will make a large impact to education up to universities.
Tablets are so common in learning
- Children are now using tablets to read textbooks.
- They can write answers to questions in the exercise.

Learner
writes answers
verify and correct errors

System
recognizes the answers
marks them immediately

Immediate Feedback
Computer assists human markers to increase marking reliability for official and large scale exams on paper.

- Apply automatic marking before or in parallel with human marking.
- Human markers mark the portion, train a classifier using the portion and then apply the trained classifier to mark the rest of answers.
- ...

Automatically mark with marking confirmation system

- Tablet → Electronic paper → Paper for a large number of applicants.
- A computer marks answers if reliable otherwise rejects ⇒ human markers mark rejected answers and correspond to wrong (false) marking.
- A examinee can confirm his/her answer and marking after entering ID & password and he/she can claim false marking..
- By employing multiple recognizers of different characteristics, we can decrease false negative marking (which will be claimed by examinees) and especially false positive marking (will not be claimed).
- If false marking is less than 3 %, the marking time (labor) is shortened (decreased) to 1/3 assuming 20 % rejection and 3 times of effort required for corresponding to false marking claimed.
- It can be shortened more if false marking is processed efficiently.
Acknowledgements

All the members of Nakagawa Lab.

Especially Dr. Jianjuan Liang who worked on character-position-free recognition.
Fish of the year
Publications

http://www.tuat.ac.jp/~nakagawa/